81 research outputs found

    Gaps in Protection of Important Ocean Areas: A Spatial Meta-Analysis of Ten Global Mapping Initiatives

    Get PDF
    To safeguard biodiversity effectively, marine protected areas (MPAs) should be sited using the best available science. There are numerous ongoing United Nations and non-governmental initiatives to map globally important marine areas. The criteria used by these initiatives vary, resulting in contradictions in the areas identified as important. Our analysis is the first to overlay these initiatives, quantify consensus, and conduct gap analyses at the global scale. We found that 55% of the ocean has been identified as important by one or more initiatives, and that individual areas have been identified by as many as seven overlapping initiatives. Using our overlay map and data on current MPA coverage, we highlight gaps in protection of important areas of the ocean. We considered any area identified by two to four initiatives to be of moderate consensus. Over 14% of the ocean fell under this category and most of this area (88%) is not yet protected. The largest concentrations of medium-consensus areas without protection were found in the Caribbean Sea, Madagascar and the southern tip of Africa, the Mediterranean Sea, and the Coral Triangle. Areas of high consensus (identified by five to seven initiatives) were almost always within MPAs, but their no-take status was often unreported. We found that nearly every marine province and nearly every exclusive economic zone contained area that has been identified as important but is not yet protected. Much of the identified area lies within contiguous stretches of \u3e100,000 km2; it is unrealistic to expect that all this area be protected. Nonetheless, our results on areas of consensus provide initial insight into opportunities for further ocean protection

    Filling the Data Gap – A Pressing Need for Advancing MPA Sustainable Finance

    Get PDF
    Reaching protected area (PA) coverage goals is challenged by a lack of sufficient financial resources. This funding gap is particularly pervasive for marine protected areas (MPAs). It has been suggested that marine conservationists examine examples from terrestrial protected areas (TPAs) for potential solutions to better fund MPAs. However, the funding needs for MPAs and TPAs have not been directly compared, and there is risk of management failures if any such differences are not properly considered when designing MPA financial strategies. We perform an in-depth literature review to investigate differences in distribution of costs incurred by MPAs and TPAs across three primary categories; establishment, operational, and opportunity costs. We use our findings to conduct a snapshot quantitative comparison, which we complement with theoretical support to provide preliminary insight into differences between MPA and TPA costs, and how these may influence financial strategies most appropriate for each type of PA. Our research suggests that TPA costs, and thereby funding requirements, are greater for the time period leading up to and including the implementation phase, whereas MPAs have higher financial requirements for meeting long-term annual operational costs. This may be primarily due to the prevalence of private property rights for terrestrial regions, which are less frequently in place for ocean areas, as well as logistical requirements for enforcement and monitoring in a marine environment. To cement these suggestions in greater analytical certainty, we call for more thorough and standardized PA cost reporting at all stages, especially for MPAs and PAs in developing countries. The quantity and quality of such data presently limits research in PA sustainable finance, and will need to be remedied to advance the field in future years

    Status, trends and management of sturgeon and paddlefish fisheries

    Get PDF
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75518/1/j.1467-2979.2005.00190.x.pd

    A Streamlined, Bi-Organelle, Multiplex PCR Approach to Species Identification: Application to Global Conservation and Trade Monitoring of the Great White Shark, Carcharodon carcharias

    Get PDF
    The great white shark, Carcharodon carcharias, is the most widely protected elasmobranch in the world, and is classified as Vulnerable by the IUCN and listed on Appendix III of CITES. Monitoring of trade in white shark products and enforcement of harvest and trade prohibitions is problematic, however, in large part due to difficulties in identifying marketed shark parts (e.g., dried fins, meat and processed carcasses) to species level. To address these conservation and management problems, we have developed a rapid, molecular diagnostic assay based on species-specific PCR primer design for accurate identification of white shark body parts, including dried fins. The assay is novel in several respects: It employs a multiplex PCR assay utilizing both nuclear (ribosomal internal transcribed spacer 2) and mitochondrial (cytochrome b) loci simultaneously to achieve a highly robust measure of diagnostic accuracy; it is very sensitive, detecting the presence of white shark DNA in a mixture of genomic DNAs from up to ten different commercially fished shark species pooled together in a single PCR tube; and it successfully identifies white shark DNA from globally distributed animals. In addition to its utility for white shark trade monitoring and conservation applications, this highly streamlined, bi-organelle, multiplex PCR assay may prove useful as a general model for the design of genetic assays aimed at detecting body parts from other protected and threatened species

    Water level fluctuations and the ecosystem functioning of lakes

    Get PDF
    Hydrological regimes are key drivers of productivity and structure in freshwater ecosystems but are increasingly impacted by human activity. Using 17 published food web models of 13 African lakes as a case study, we explored relationships between seasonal and interannual water level fluctuations and 15 attributes related to ecosystem function. We interpreted our results in the context of Odum's ecosystem maturity hypothesis, as systems with higher magnitude fluctuations may be kept at an earlier maturity stage than those that are relatively stable. The data we compiled indicate that long-term changes in the hydrological regimes of African lakes have already taken place. We used Least Absolute Shrinkage and Selection Operator (LASSO) regression to examine relationships between ecosystem attributes and seven physical characteristics. Of these characteristics, interannual water level fluctuation magnitude was the most frequently retained predictor in the regression models. Our results indicate that interannual water level fluctuations are positively correlated with primary and overall production, but negatively correlated with fish diversity, transfer efficiency, and food chain length. These trends are opposite those expected with increasing ecosystem maturity. Interestingly, we found seasonal water level fluctuations to be positively correlated with biomass. An increase in standing biomass is generally associated with more mature ecosystems. However, we found that less production and biomass occurred at high trophic levels in highly fluctuating compared to relatively stable systems. This synthesis provides evidence that water level fluctuations are a key process influencing ecosystem structure and function in lakes.publishedVersio

    A New Tool to Evaluate, Improve, and Sustain Marine Protected Area Financing Built on a Comprehensive Review of Finance Sources and Instruments

    Get PDF
    Marine protected areas (MPAs) require sustained funding to provide sustained marine protection. Up until now government budgets, multi- and bi-lateral aid, and philanthropic grants have been commonly relied upon to finance the management and enforcement of MPAs. But new funding mechanisms, such as impact investments or blue carbon, are increasingly applied and developed. Here, we present a semi-structured review that identifies 11 or more sources of finance, 21 financial instruments and more than 75 potential combinations thereof that show the current diversity of financial mechanisms available to support MPA establishment and operations. Based on the review, we developed nearly 100 indicators reflecting environmental, governmental, socioeconomic, and management characteristics that can inform the appropriateness, and corresponding strengths and weaknesses, of applying these financial mechanisms to any given MPA. The outputs provide a series of recommendations for implementing new funding mechanisms and ways to improve the sustainability of in-place mechanisms. The findings were compiled into a replicable framework and excel tool that was pilot tested in May 2021 for Parque Nacional Natural Corales de Profundidad in Colombia that identified potential ways to improve upon financial mechanisms, including, hiring a full-time manager and potential alternative mechanisms like biodiversity offsets from fossil fuel exploration and exploitation, among several others. The research also identified barriers for implementing financial mechanisms that reflect broader systemic challenges for MPA finance worldwide

    A scientific synthesis of marine protected areas in the United States: status and recommendations

    Get PDF
    Marine protected areas (MPAs) are a key tool for achieving goals for biodiversity conservation and human well-being, including improving climate resilience and equitable access to nature. At a national level, they are central components in the U.S. commitment to conserve at least 30% of U.S. waters by 2030. By definition, the primary goal of an MPA is the long-term conservation of nature; however, not all MPAs provide the same ecological and social benefits. A U.S. system of MPAs that is equitable, well-managed, representative and connected, and includes areas at a level of protection that can deliver desired outcomes is best positioned to support national goals. We used a new MPA framework, The MPA Guide, to assess the level of protection and stage of establishment of the 50 largest U.S. MPAs, which make up 99.7% of the total U.S. MPA area (3.19 million km2). Over 96% of this area, including 99% of that which is fully or highly protected against extractive or destructive human activities, is in the central Pacific ocean. Total MPA area in other regions is sparse – only 1.9% of the U.S. ocean excluding the central Pacific is protected in any kind of MPA (120,976 km2). Over three quarters of the non-central Pacific MPA area is lightly or minimally protected against extractive or destructive human activities. These results highlight an urgent need to improve the quality, quantity, and representativeness of MPA protection in U.S. waters to bring benefits to human and marine communities. We identify and review the state of the science, including focal areas for achieving desired MPA outcomes and lessons learned from places where sound ecological and social design principles come together in MPAs that are set up to achieve national goals for equity, climate resilience, and biodiversity conservation. We recommend key opportunities for action specific to the U.S. context, including increasing funding, research, equity, and protection level for new and existing U.S. MPAs

    Addressing Criticisms of Large-Scale Marine Protected Areas

    Get PDF
    Designated large-scale marine protected areas (LSMPAs, 100,000 or more square kilometers) constitute over two-thirds of the approximately 6.6% of the ocean and approximately 14.5% of the exclusive economic zones within marine protected areas. Although LSMPAs have received support among scientists and conservation bodies for wilderness protection, regional ecological connectivity, and improving resilience to climate change, there are also concerns. We identified 10 common criticisms of LSMPAs along three themes: (1) placement, governance, and management; (2) political expediency; and (3) social–ecological value and cost. Through critical evaluation of scientific evidence, we discuss the value, achievements, challenges, and potential of LSMPAs in these arenas. We conclude that although some criticisms are valid and need addressing, none pertain exclusively to LSMPAs, and many involve challenges ubiquitous in management. We argue that LSMPAs are an important component of a diversified management portfolio that tempers potential losses, hedges against uncertainty, and enhances the probability of achieving sustainably managed oceans
    • …
    corecore