49 research outputs found

    Building response to tunnelling

    Get PDF
    AbstractUnderstanding how buildings respond to tunnelling-induced ground movements is an area of great importance for urban tunnelling projects, particularly for risk management. In this paper, observations of building response to tunnelling, from both centrifuge modelling and a field study in Bologna, are used to identify mechanisms governing the soil–structure interaction. Centrifuge modelling was carried out on an 8-m-diameter beam centrifuge at Cambridge University, with buildings being modelled as highly simplified elastic and inelastic beams of varying stiffness and geometry. The Bologna case study presents the response of two different buildings to the construction of a sprayed concrete lining (SCL) tunnel, 12m in diameter, with jet grouting and face reinforcement.In both studies, a comparison of the building settlement and horizontal displacement profiles, with the greenfield ground movements, enables the soil structure interaction to be quantified. Encouraging agreement between the modification to the greenfield settlement profile, displayed by the buildings, and estimates made from existing predictive tools is observed. Similarly, both studies indicate that the horizontal strains, induced in the buildings, are typically at least an order of magnitude smaller than the greenfield values. This is consistent with observations in the literature. The potential modification to the settlement distortions is shown to have significant implications on the estimated level of damage. Potential issues for infrastructures connected to buildings, arising from the embedment of rigid buildings into the soil, are also highlighted

    Loss of consciousness is related to hyper-1 correlated gamma-band activity in anesthetized macaques and sleeping humans

    Get PDF
    Loss of consciousness can result from a wide range of causes, including natural sleep and pharmacologically induced anesthesia. Important insights might thus come from identifying neuronal mechanisms of loss and re-emergence of consciousness independent of a specific manipulation. Therefore, to seek neuronal signatures of loss of consciousness common to sleep and anesthesia we analyzed spontaneous electrophysiological activity recorded in two experiments. First, electrocorticography (ECoG) acquired from 4 macaque monkeys anesthetized with different anesthetic agents (ketamine, medetomidine, propofol) and, second, stereo-electroencephalography (sEEG) from 10 epilepsy patients in different wake-sleep stages (wakefulness, NREM, REM). Specifically, we investigated co-activation patterns among brain areas, defined as correlations between local amplitudes of gamma-band activity. We found that resting wakefulness was associated with intermediate levels of gamma-band coupling, indicating neither complete dependence, nor full independence among brain regions. In contrast, loss of consciousness during NREM sleep and propofol anesthesia was associated with excessively correlated brain activity, as indicated by a robust increase of number and strength of positive correlations. However, such excessively correlated brain signals were not observed during REM sleep, and were present only to a limited extent during ketamine anesthesia. This might be related to the fact that, despite suppression of behavioral responsiveness, REM sleep and ketamine anesthesia often involve presence of dream-like conscious experiences. We conclude that hyper-correlated gamma-band activity might be a signature of loss of consciousness common across various manipulations and independent of behavioral responsiveness

    Studying functional networks in human brain through intracerebral spontaneous EEG

    Get PDF
    none6G.Arnulfo; A.Pigorini; M.Massimini; L.Nobili; A.Schenone; M.M. FatoArnulfo, Gabriele; Pigorini, A.; Massimini, M.; Nobili, L.; Schenone, Andrea; Fato, MARCO MASSIM

    EEG Responses to TMS Are Sensitive to Changes in the Perturbation Parameters and Repeatable over Time

    Get PDF
    BACKGROUND: High-density electroencephalography (hd-EEG) combined with transcranial magnetic stimulation (TMS) provides a direct and non-invasive measure of cortical excitability and connectivity in humans and may be employed to track over time pathological alterations, plastic changes and therapy-induced modifications in cortical circuits. However, the diagnostic/monitoring applications of this technique would be limited to the extent that TMS-evoked potentials are either stereotypical (non-sensitive) or random (non-repeatable) responses. Here, we used controlled changes in the stimulation parameters (site, intensity, and angle of stimulation) and repeated longitudinal measurements (same day and one week apart) to evaluate the sensitivity and repeatability of TMS/hd-EEG potentials. METHODOLOGY/PRINCIPAL FINDINGS: In 10 volunteers, we performed 92 single-subject comparisons to evaluate the similarities/differences between pairs of TMS-evoked potentials recorded in the same/different stimulation conditions. For each pairwise comparison, we used non-parametric statistics to calculate a Divergence Index (DI), i.e., the percentage of samples that differed significantly, considering all scalp locations and the entire post-stimulus period. A receiver operating characteristic analysis showed that it was possible to find an optimal DI threshold of 1.67%, yielding 96.7% overall accuracy of TMS/hd-EEG in detecting whether a change in the perturbation parameters occurred or not. CONCLUSIONS/SIGNIFICANCE: These results demonstrate that the EEG responses to TMS essentially reflect deterministic properties of the stimulated neuronal circuits as opposed to stereotypical responses or uncontrolled variability. To the extent that TMS-evoked potentials are sensitive to changes and repeatable over time, they may be employed to detect longitudinal changes in the state of cortical circuits

    Global and local complexity of intracranial EEG decreases during NREM sleep

    Get PDF
    Key to understanding the neuronal basis of consciousness is the characterisation of the neural signatures of changes in level of consciousness during sleep. Here we analysed three measures of dynamical complexity on spontaneous depth electrode recordings from 10 epilepsy patients during wakeful rest and different stages of sleep: (i) Lempel-Ziv complexity, which is derived from how compressible the data are; (ii) amplitude coalition entropy, which measures the variability over time of the set of channels active above a threshold; (iii) synchrony coalition entropy, which measures the variability over time of the set of synchronous channels. When computed across sets of channels that are broadly distributed across multiple brain regions, all 3 measures decreased substantially in all participants during early-night non-rapid eye movement (NREM) sleep. This decrease was partially reversed during late-night NREM sleep, while the measures scored similar to wakeful rest during rapid eye movement (REM) sleep. This global pattern was in almost all cases mirrored at the local level by groups of channels located in a single region. In testing for differences between regions, we found elevated signal complexity in the frontal lobe. These differences could not be attributed solely to changes in spectral power between conditions. Our results provide further evidence that the level of consciousness correlates with neural dynamical complexity

    TAAC - TMS Adaptable Auditory Control: A universal tool to mask TMS clicks

    Get PDF
    Background: Coupling transcranial magnetic stimulation with electroencephalography (TMS-EEG) allows recording the EEG response to a direct, non-invasive cortical perturbation. However, obtaining a genuine TMS- evoked EEG potential requires controlling for several confounds, among which a main source is represented by the auditory evoked potentials (AEPs) associated to the TMS discharge noise (TMS click). This contaminating factor can be in principle prevented by playing a masking noise through earphones. New method: Here we release TMS Adaptable Auditory Control (TAAC), a highly flexible, open-source, Matlab®- based interface that generates in real-time customized masking noises. TAAC creates noises starting from the stimulator-specific TMS click and tailors them to fit the individual, subject-specific click perception by mixing and manipulating the standard noises in both time and frequency domains. Results: We showed that TAAC allows us to provide standard as well as customized noises able to effectively and safely mask the TMS click. Comparison with existing methods: Here, we showcased two customized noises by comparing them to two standard noises previously used in the TMS literature (i.e., a white noise and a noise generated from the stimulator-specific TMS click only). For each, we quantified the Sound Pressure Level (SPL; measured by a Head and Torso Simulator - HATS) required to mask the TMS click in a population of 20 healthy subjects. Both customized noises were effective at safe (according to OSHA and NIOSH safety guidelines) and lower SPLs with respect to standard noises. Conclusions: At odds with previous methods, TAAC allows creating effective and safe masking noises specifically tailored on each TMS device and subject. The combination of TAAC with tools for the real-time visualization of TEPs can help control the influence of auditory confounds also in non-compliant patients. Finally, TAAC is a highly flexible and open-source tool, so it can be further extended to meet different experimental requirements

    Bistability breaks-off deterministic responses to intracortical stimulation during non-REM sleep

    Get PDF
    During non-rapid eye movement (NREM) sleep (stage N3), when consciousness fades, cortico-cortical interactions are impaired while neurons are still active and reactive. Why is this? We compared cortico-cortical evoked-potentials recorded during wakefulness and NREM by means of time-frequency analysis and phase-locking measures in 8 epileptic patients undergoing intra-cerebral stimulations/recordings for clinical evaluation. We observed that, while during wakefulness electrical stimulation triggers a chain of deterministic phase-locked activations in its cortical targets, during NREM the same input induces a slow wave associated with an OFF-period (suppression of power > 20 Hz), possibly reflecting a neuronal down-state. Crucially, after the OFF-period, cortical activity resumes to wakefulness-like levels, but the deterministic effects of the initial input are lost, as indicated by a sharp drop of phase-locked activity. These findings suggest that the intrinsic tendency of cortical neurons to fall into a down-state after a transient activation (i.e. bistability) prevents the emergence of stable patterns of causal interactions among cortical areas during NREM. Besides sleep, the same basic neurophysiological dynamics may play a role in pathological conditions in which thalamo-cortical information integration and consciousness are impaired in spite of preserved neuronal activity. (C) 2015 The Authors. Published by Elsevier Inc.Peer reviewe

    An integrative, multiscale view on neural theories of consciousness.

    Get PDF
    How is conscious experience related to material brain processes? A variety of theories aiming to answer this age-old question have emerged from the recent surge in consciousness research, and some are now hotly debated. Although most researchers have so far focused on the development and validation of their preferred theory in relative isolation, this article, written by a group of scientists representing different theories, takes an alternative approach. Noting that various theories often try to explain different aspects or mechanistic levels of consciousness, we argue that the theories do not necessarily contradict each other. Instead, several of them may converge on fundamental neuronal mechanisms and be partly compatible and complementary, so that multiple theories can simultaneously contribute to our understanding. Here, we consider unifying, integration-oriented approaches that have so far been largely neglected, seeking to combine valuable elements from various theories

    The spectral features of EEG responses to transcranial magnetic stimulation of the primary motor cortex depend on the amplitude of the motor evoked potentials

    Get PDF
    Transcranial magnetic stimulation (TMS) of the primary motor cortex (M1) can excite both cortico-cortical and cortico-spinal axons resulting in TMS-evoked potentials (TEPs) and motor-evoked potentials (MEPs), respectively. Despite this remarkable difference with other cortical areas, the influence of motor output and its amplitude on TEPs is largely unknown. Here we studied TEPs resulting from M1 stimulation and assessed whether their waveform and spectral features depend on the MEP amplitude. To this aim, we performed two separate experiments. In experiment 1, single-pulse TMS was applied at the same supra-threshold intensity on primary motor, prefrontal, premotor and parietal cortices and the corresponding TEPs were compared by means of local mean field power and time-frequency spectral analysis. In experiment 2 we stimulated M1 at resting motor threshold in order to elicit MEPs characterized by a wide range of amplitudes. TEPs computed from high-MEP and low-MEP trials were then compared using the same methods applied in experiment 1. In line with previous studies, TMS of M1 produced larger TEPs compared to other cortical stimulations. Notably, we found that only TEPs produced by M1 stimulation were accompanied by a late event-related desynchronization (ERD-peaking at ~300 ms after TMS), whose magnitude was strongly dependent on the amplitude of MEPs. Overall, these results suggest that M1 produces peculiar responses to TMS possibly reflecting specific anatomo-functional properties, such as the re-entry of proprioceptive feedback associated with target muscle activation
    corecore