6 research outputs found

    Entropy production and coarse-graining in Markov processes

    Get PDF
    We study the large time fluctuations of entropy production in Markov processes. In particular, we consider the effect of a coarse-graining procedure which decimates {\em fast states} with respect to a given time threshold. Our results provide strong evidence that entropy production is not directly affected by this decimation, provided that it does not entirely remove loops carrying a net probability current. After the study of some examples of random walks on simple graphs, we apply our analysis to a network model for the kinesin cycle, which is an important biomolecular motor. A tentative general theory of these facts, based on Schnakenberg's network theory, is proposed.Comment: 18 pages, 13 figures, submitted for publicatio

    Entropy production and coarse-graining in Markov processes

    Full text link
    We study the large time fluctuations of entropy production in Markov processes. In particular, we consider the effect of a coarse-graining procedure which decimates {\em fast states} with respect to a given time threshold. Our results provide strong evidence that entropy production is not directly affected by this decimation, provided that it does not entirely remove loops carrying a net probability current. After the study of some examples of random walks on simple graphs, we apply our analysis to a network model for the kinesin cycle, which is an important biomolecular motor. A tentative general theory of these facts, based on Schnakenberg's network theory, is proposed.Comment: 18 pages, 13 figures, submitted for publicatio

    Coarse-Grained Probabilistic Automata Mimicking Chaotic Systems

    Get PDF
    Discretization of phase space usually nullifies chaos in dynamical systems. We show that if randomness is associated with discretization dynamical chaos may survive and be indistinguishable from that of the original chaotic system, when an entropic, coarse-grained analysis is performed. Relevance of this phenomenon to the problem of quantum chaos is discussed.Comment: 4 pages, 4 figure

    Boltzmann entropy and chaos in a large assembly of weakly interacting systems

    Full text link
    We introduce a high dimensional symplectic map, modeling a large system consisting of weakly interacting chaotic subsystems, as a toy model to analyze the interplay between single-particle chaotic dynamics and particles interactions in thermodynamic systems. We study the growth with time of the Boltzmann entropy, S_B, in this system as a function of the coarse graining resolution. We show that a characteristic scale emerges, and that the behavior of S_B vs t, at variance with the Gibbs entropy, does not depend on the coarse graining resolution, as far as it is finer than this scale. The interaction among particles is crucial to achieve this result, while the rate of entropy growth depends essentially on the single-particle chaotic dynamics (for t not too small). It is possible to interpret the basic features of the dynamics in terms of a suitable Markov approximation.Comment: 21 pages, 11 figures, submitted to Journal of Statistical Physic

    Non equilibrium dynamics of disordered systems : understanding the broad continuum of relevant time scales via a strong-disorder RG in configuration space

    Full text link
    We show that an appropriate description of the non-equilibrium dynamics of disordered systems is obtained through a strong disorder renormalization procedure in {\it configuration space}, that we define for any master equation with transitions rates W(CC)W ({\cal C} \to {\cal C}') between configurations. The idea is to eliminate iteratively the configuration with the highest exit rate Wout(C)=CW(CC)W_{out} ({\cal C})= \sum_{{\cal C}'} W ({\cal C} \to {\cal C}') to obtain renormalized transition rates between the remaining configurations. The multiplicative structure of the new generated transition rates suggests that, for a very broad class of disordered systems, the distribution of renormalized exit barriers defined as Bout(C)lnWout(C)B_{out} ({\cal C}) \equiv - \ln W_{out}({\cal C}) will become broader and broader upon iteration, so that the strong disorder renormalization procedure should become asymptotically exact at large time scales. We have checked numerically this scenario for the non-equilibrium dynamics of a directed polymer in a two dimensional random medium.Comment: v2=final versio

    Artificial Sequences and Complexity Measures

    Get PDF
    In this paper we exploit concepts of information theory to address the fundamental problem of identifying and defining the most suitable tools to extract, in a automatic and agnostic way, information from a generic string of characters. We introduce in particular a class of methods which use in a crucial way data compression techniques in order to define a measure of remoteness and distance between pairs of sequences of characters (e.g. texts) based on their relative information content. We also discuss in detail how specific features of data compression techniques could be used to introduce the notion of dictionary of a given sequence and of Artificial Text and we show how these new tools can be used for information extraction purposes. We point out the versatility and generality of our method that applies to any kind of corpora of character strings independently of the type of coding behind them. We consider as a case study linguistic motivated problems and we present results for automatic language recognition, authorship attribution and self consistent-classification.Comment: Revised version, with major changes, of previous "Data Compression approach to Information Extraction and Classification" by A. Baronchelli and V. Loreto. 15 pages; 5 figure
    corecore