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Discretization of phase space usually nullifies chaos in dynamical systems. We show that if random-
ness is associated with discretization dynamical chaos may survive and be indistinguishable from that of
the original chaotic system, when an entropic, coarse-grained analysis is performed. Relevance of this
phenomenon to the problem of quantum chaos is discussed.
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where t is discrete time, x belongs to �0; 1�D, and D is the
with faster convergence, of the information rate hn��� �
Hn��� 
Hn
1���, as n ! 1 [15,16]. The KS entropy hK
Chaos is a common characteristic of motion in con-
tinuous spaces. It is signaled by many indicators. Among
these, positivity of the Kolmogorov-Sinai (KS) entropy is
perhaps the most significant, both in theory and applica-
tions [1,2]. On the other hand, trajectories in discrete
spaces are always asymptotically periodic—hence, of
null KS entropy. They may arise in the discretization of
continuous systems, as in the numerical simulation of
differential equations, but arguably their role is most
significant in the correspondence of classical and quan-
tum dynamics.

Consider, for instance, the paradigmatic example of
the quantum Arnol’d cat. Its dynamics are algorithmi-
cally equivalent to classical motion on a regular lattice,
whose spacing is inversely proportional to the Planck
constant [3,4]. When the spacing diminishes, the lattice
becomes denser in continuous, classical phase space. Yet,
it has long been recognized that chaos cannot be naively
revived in such a limiting procedure [4–6]. A way out of
this impasse is obtained by randomly perturbing the
dynamics [7]: Is this addition enough to bring back the
full algorithmic content, that is, the distinctive signature
of chaos [8]? We attempt here an answer to this question
in the most general and simple terms.

Deterministic-probabilistic systems (such as those oc-
curring in cellular automata [9]) have long been inves-
tigated, with respect to their invariant measures [10] and
also to the entropic content of their motion [11]. We now
extend this study to the regime where continuous, dis-
crete, and random effects are simultaneously present and
intermix in nontrivial ways.

Let us therefore consider the deterministic map

xt�1 � f�xt�; (1)
0031-9007=03=91(4)=044101(4)$20.00 
dimension of the space. We embed in �0; 1�D a uniform
rectangular lattice, of spacing �, and we label its states by
integer vectors n in �1; b1�c�

D (b	c is the integer part) [12].
We then restrict the map f to act on this lattice, and we
add randomness:

nt�1 �

�
1

�
f��nt�

�
��t: (2)

We stipulate that the uncorrelated, random ‘‘jumps’’ �t
extend to lattice neighbors with total probability p, so that
�t � 0 with probability 1
 p. Note that when p � 0 the
system is purely deterministic. For definiteness, we study
the generalized tent map in one dimension:

xt�1 �

�
axt for 0 � x � 1

a ;
a�1
 xt�=�a
 1� for 1

a � x � 1;
(3)

with a � 3, the two-dimensional Arnol’d cat map [1]:

xt�1 � �xt � yt�mod1; yt�1 � �xt � 2yt�mod1; (4)

and their probabilistic lattice automata, Eq. (2).
We are now ready to briefly introduce our analytical

tools. Let fE1; E2; . . .g be a finite partition of phase space
consisting of identical hypercubic cells of side �. Let
w� � w1

�; w2
�; . . . ; wn

� be a finite symbolic trajectory, of
length n � jw�j: wi

� � j if and only if xi 2 Ej. Let also
p�w�� be the frequency of w�, defined by the physical
ergodic measure. The n-block entropies Hn���, n �
1; 2; . . . are defined by the sums

Hn��� � 

X

w� : jw�j�n

p�w�� logp�w��: (5)

The partition entropy h��� is the limit of Hn���=n, or,
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FIG. 1. n-word entropies Hn��;M� vs n for the discretized
tent map with � � 1=18, and M � 252 (�), 1008 (�), and
4032 (�). Hn��;M� are compared to the lines with slope
h�1=18� ’ 0:20 and hK ’ 0:636.
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is the supremum of the partition entropies, with respect to
all countable partitions; hence, h��� � hK, and hK can be
obtained letting � go to zero. However, the function h���
for finite � is interesting in its own right [17]. This is
because it gauges the rate of information production, for
observations of finite accuracy, as a function of the reso-
lution desired. In line with our approach in [5] we also
ascribe importance to the full behavior of Hn��� versus n,
and not only to the limit h���.

It is well-known that the systems (3) and (4) have
positive KS entropy. In contrast, the dynamics of the
purely discrete systems [i.e., Eq. (2) with p � 0] are peri-
odic, hence of null entropy. Yet, at scales larger than the
lattice spacing, � > �m :� �, they approximate the con-
tinuous dynamics for a finite time, roughly of the order of
the logarithm of the period of the trajectory [13,14,18–
20]. As a consequence, the entropies Hn��� are also close
to those of the continuous system, for n � n. The upper
boundary n can be estimated requiring that at n � n the
number of different � histories of length n of the con-
tinuous system, N ��n� � exp�h���n�, be of the same
order of the number of discrete states, M� �1=��D.
Here D is the dimension of the attractor or, in the absence
of this latter, the dimension of the space. This leads to

n�
logM
h���

� 

D log�
h���

: (6)

Dependence of n on the average period of trajectories,
T, follows equally well. Since T �MD2=2, where D2 is the
correlation dimension of the ergodic measure [20],

n�
2D
D2

logT
h���

: (7)

In the deterministic discrete systems [Eq. (2) with
p � 0], n may be large enough to observe the entropic
growth of the continuous map and sometimes to compute
the entropy h��� of the latter to a fair accuracy. However,
when n exceeds n, the n-word entropies, Hn, quickly
saturate at a constant value, of the order of logT or
log�1=�� or logM, which reveals the periodic regime of
the dynamics. It is clear that while the time n is model
dependent, its logarithmic scaling with the parameters is
universal: the discrete, ‘‘pseudo’’ chaos seems to be very
short-lived [4–6]. It is at this point that the random jumps
�t completely change the scenario.

First of all, the null-entropy, periodic system is turned
into an aperiodic stochastic process of maximal entropy
hp. If �t extends to k neighbors with equal probability
p=k, then hp � 
p ln�p=k� 
 �1
 p� ln�1
 p�. Since
hp totally originates from the random jumps at the lattice
scale �m, it can be fully detected only at this scale: hp ’
h��m� � h���, for � � �m.

It is clear that hp has no relation with the KS entropy
hK. Then, two cases must be considered. In view of the
above, when hp < hK, addition of randomness, and ob-
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servational coarse graining, cannot achieve the full en-
tropy content of the continuous system. This no-go rule
does not apply in the opposite case. We find that when
hp � hK and � � �m , the partition entropies of the
continuous system and of the discrete ones tend to coin-
cide. Notice that the condition � � �m requires that the
number of discrete states per cell, M�D, be large.

To prove these claims, let us first consider the tent map,
Eqs. (2) and (3), with p � 0:05, and nearest-neighbor
random jumps. In this case hp ’ 0:233 is much smaller
than hK ’ 0:636. Figure 1 plots Hn��;M� versus n, for dif-
ferent values of M, and � � 1=18. This partition is gener-
ating, so that the partition entropy of the continuous map,
hcont�1=18�, is equal to hK. We observe that for n < n,
hn��� is approximately equal to hK, the entropy of the
continuous system. Later on, for n > n, the curve Hn
bends and—rather than tending to a constant, as it would
if randomness were not present —redirects its growth to a
different linear regime: Hn ’ h��;M��n
 n� � A logM,
with A a suitable constant. Numerically, we also find that
h��;M� ’ 0:20 � hp, independently of M, even if � �
1=18 is much larger than �m. This is noteworthy: were
the evolution driven only by the probabilistic diffusion,
nt�1 � nt � �t, the � entropy would have been 10 times
smaller, hdiff�1=18; 252� ’ 0:02. The effect of randomness
is strongly enhanced by the deterministic evolution [21].

By raising the value of the jump probability p [22] the
entropy hp increases, and it may exceed the KS entropy
hK, or hcont��� for a given �. Figure 2 plots h��;M� versus
hp, for different values of M. At fixed, low hp, the M
dependence is rather mild, as was observed in Fig. 1, and
h��;M� is smaller than hcont���. Raising hp at fixed M to
well exceed this value, and then increasing M, we obtain
convergence of h��;M� to hcont���.

This convergence is further illustrated in Fig. 3 by
fixing hp � 1:5, by choosing � � 1=7 and � � 1=10,
044101-2
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FIG. 2. Partition entropies of the discretized tent map h��;M�
vs hp, with k � 4, � � 1=7, and M � 63 (�), M � 168 (�) and
M � 4032 ( � ). The dotted line is drawn at hcont�1=7�, the
partition entropy of the continuous system for � � 1=7.
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and by plotting h��;M� versus z � M�, the number of
lattice points enclosed in a cell of the partition. The
different curves tend to coincide for small z, where the
entropies overshoot: when coarse graining is too fine (too
few states in a cell) the direct action of randomness is
dominating. This effect fades in the opposite direction:
randomness becomes a germ that gets scale amplified by
the dynamics, and h��; z=�� tends to hcont���, the partition
entropy of the continuous system.

This behavior appears to be generic, as indicated by the
results for the two-dimensional Arnol’d cat map, subject
to a random perturbation with k � 4 and hp � 1:5, plot-
ted in Fig. 4. Since � � 1=4; 1=16; 1=64, all provide gen-
erating partitions, the corresponding values of hcont��� are
equal to hK ’ 0:962. As a consequence the data fall on a
single line, starting from the entropy of the random
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FIG. 3. � entropies h��;M� vs z � M�, for the discretized tent
map, with � � 1=7 and � � 1=10 (�). Horizontal lines are
drawn at hcont�1=7� � 0:54, and hcont�1=10� � 0:58.
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perturbation, hp � 1:5, and converging to the KS entropy
hK ’ 0:962. The convergence of hn��;M� to the asymp-
totic values is shown in the inset of Fig. 4, together with
the partition entropies obtained for the purely discrete
system (p � 0), and for the purely stochastic motion.
This comparison proves that h��; z=�� are truly asymp-
totic values and provides further evidence in support of
our explanation of the phenomenon, with which we now
conclude.

Imposing a finite lattice to the otherwise continuum
set of states of a dynamical system, inevitably bounds
the algorithmic complexity of its trajectories, and the
value of its partition entropies, to the logarithm of the
number of states. If the lattice is perceived with some
fuzziness — or if random errors are allowed, following
the approach of this Letter — one expects that on large
scales continuum properties and chaos might reemerge
and be indistinguishable from that of the original sys-
tem [23]. We have determined the conditions for this to
happen. First, observational coarse graining must be in-
voked. Second, the action of the external randomness
must be confined to the ‘‘microscopic,’’ unresolved scales.
The instability of deterministic dynamics amplifies
these microscopic, random errors and carries them over
to the large, observation scales. Finally, by a sort of
conservation law, the flow of information supplied by
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FIG. 4. Entropies h��;M� vs M� in the perturbed Arnol’d cat
map. Here, M � 162 (squares), 322 (circles), 642 (diamonds),
1282 (filled squares), 2562 (filled circles), and 5122 (filled
diamonds); � � 1=4; 1=16; 1=64. The horizontal line is drawn
at hK ’ 0:962. In the inset, hn��;M� vs n for � � 1=64 and M �
162; . . . ; 2562 (coded as before). At the largest value of M, M �
2562, the purely discrete system (hearts) shows rapid conver-
gence to zero, in accordance with Eqs. (6) and (7). The purely
diffusive system (clubs) on its part is consistently close to
hdiff�1=64; 256

2� ’ 0:085.
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the microscopic zitterbewegung must not be less than hK,
the maximum entropy production rate of the continuous
system.

For a long time, research in quantum chaos has looked
for quantum characteristics related to classical chaotic
motion. The fact that none of these could be properly
called chaos led to the concept of pseudochaos and
cast doubts on the very existence of chaos in nature.
The results presented in this Letter suggest that one
might try to reverse this approach and consider classical
dynamics as an effective theory that, via truly chaotic
deterministic dynamical systems, models a randomly
perturbed quantum motion under observational coarse
graining.
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