298 research outputs found

    Code dependencies of pre-supernova evolution and nucleosynthesis in massive stars: Evolution to the end of core helium burning

    Get PDF
    Massive stars are key sources of radiative, kinetic and chemical feedback in the Universe. Grids of massive star models computed by different groups each using their own codes, input physics choices and numerical approximations, however, lead to inconsistent results for the same stars. We use three of these 1D codes – genec, kepler and mesa – to compute non-rotating stellar models of 15, 20 and 25 M⊙ and compare their nucleosynthesis. We follow the evolution from the main sequence until the end of core helium burning. The genec and kepler models hold physics assumptions used in large grids of published models. The mesa code was set up to use convective core overshooting such that the CO core masses are consistent with those obtained by genec. For all models, full nucleosynthesis is computed using the NuGrid post-processing tool mppnp. We find that the surface abundances predicted by the models are in reasonable agreement. In the helium core, the standard deviation of the elemental overproduction factors for Fe to Mo is less than 30 per cent – smaller than the impact of the present nuclear physics uncertainties. For our three initial masses, the three stellar evolution codes yield consistent results. Differences in key properties of the models, e.g. helium and CO core masses and the time spent as a red supergiant, are traced back to the treatment of convection and, to a lesser extent, mass loss. The mixing processes in stars remain the key uncertainty in stellar modelling. Better constrained prescriptions are thus necessary to improve the predictive power of stellar evolution models

    Stellar (n,γ) cross sections of ²³Na

    Get PDF
    The cross section of the ²³Na(n,γ)²⁴Na reaction has been measured via the activation method at the Karlsruhe 3.7 MV Van de Graaff accelerator. NaCl samples were exposed to quasistellar neutron spectra at kT = 5.1 and 25 keV produced via the ¹⁸O(p,n)¹⁸F and ⁷Li(p,n)⁷Be reactions, respectively. The derived capture cross sections (σ)kT=5keV = 9.1 ± 0.3mb and (σ)kT=25keV = 2.03 ± 0.05 mb are significantly lower than reported in literature. These results were used to substantially revise the radiative width of the first ²³Na resonance and to establish an improved set of Maxwellian average cross sections. The implications of the lower capture cross section for current models of s-process nucleosynthesis are discussed

    Stellar neutron capture cross sections of ²⁰ ²¹ ²²Ne

    Get PDF
    The stellar (n,γ) cross sections of the Ne isotopes are important for a number of astrophysical quests, i.e., for the interpretation of abundance patterns in presolar material or with respect to the s-process neutron balance in red giant stars. This paper presents resonance studies of experimental data in the keV range, which had not been fully analyzed before. The analyses were carried out with the R-matrix code sammy. With these results for the resonant part and by adding the components due to direct radiative capture, improved Maxwellian-averaged cross sections (MACS) could be determined. At kT=30keV thermal energy we obtain MACS values of 240±29,1263±160, and 53.2±2.7 μbarn for ²⁰Ne,²¹Ne, and ²²Ne, respectively. In earlier work the stellar rates of ²⁰Ne and ²¹Ne had been grossly overestimated. ²²Ne and ²⁰Ne are significant neutron poisons for the s process in stars because their very small MACS values are compensated by their large abundances

    Code dependencies of pre-supernova evolution and nucleosynthesis in massive stars: evolution to the end of core helium burning

    Get PDF
    Massive stars are key sources of radiative, kinetic and chemical feedback in the Universe. Grids of massive star models computed by different groups each using their own codes, input physics choices and numerical approximations, however, lead to inconsistent results for the same stars. We use three of these 1D codes - genec, kepler and mesa - to compute non-rotating stellar models of 15, 20 and 25 M⊙ and compare their nucleosynthesis. We follow the evolution from the main sequence until the end of core helium burning. The genec and kepler models hold physics assumptions used in large grids of published models. The mesa code was set up to use convective core overshooting such that the CO core masses are consistent with those obtained by genec. For all models, full nucleosynthesis is computed using the NuGrid post-processing tool mppnp. We find that the surface abundances predicted by the models are in reasonable agreement. In the helium core, the standard deviation of the elemental overproduction factors for Fe to Mo is less than 30 per cent - smaller than the impact of the present nuclear physics uncertainties. For our three initial masses, the three stellar evolution codes yield consistent results. Differences in key properties of the models, e.g. helium and CO core masses and the time spent as a red supergiant, are traced back to the treatment of convection and, to a lesser extent, mass loss. The mixing processes in stars remain the key uncertainty in stellar modelling. Better constrained prescriptions are thus necessary to improve the predictive power of stellar evolution model

    High-resolution abundance analysis of red giants in the globular cluster NGC 6522

    Get PDF
    The [Sr/Ba] and [Y/Ba] scatter observed in some galactic halo stars that are very metal-poor stars and in a few individual stars of the oldest known Milky Way globular cluster NGC 6522,have been interpreted as evidence of early enrichment by massive fast-rotating stars (spinstars). Because NGC 6522 is a bulge globular cluster, the suggestion was that not only the very-metal poor halo stars, but also bulge stars at [Fe/H]~-1 could be used as probes of the stellar nucleosynthesis signatures from the earlier generations of massive stars, but at much higher metallicity. For the bulge the suggestions were based on early spectra available for stars in NGC 6522, with a medium resolution of R~22,000 and a moderate signal-to-noise ratio. The main purpose of this study is to re-analyse the NGC 6522 stars previously reported using new high-resolution (R~45,000) and high signal-to-noise spectra (S/N>100). We aim at re-deriving their stellar parameters and elemental ratios, in particular the abundances of the neutron-capture s-process-dominated elements such as Sr, Y, Zr, La, and Ba, and of the r-element Eu. High-resolution spectra of four giants belonging to the bulge globular cluster NGC 6522 were obtained at the 8m VLT UT2-Kueyen telescope with the UVES spectrograph in FLAMES-UVESconfiguration. The spectroscopic parameters were derived based on the excitation and ionization equilibrium of \ion{Fe}{I} and \ion{Fe}{II}. Our analysis confirms a metallicity [Fe/H] = -0.95+-0.15 for NGC 6522, and the overabundance of the studied stars in Eu (with +~0.2 < [Eu/Fe] < +~0.4) and alpha-elements O and Mg. The neutron-capture s-element-dominated Sr, Y, Zr, Ba, La now show less pronounced variations from star to star. Enhancements are in the range 0.0 < [Sr/Fe] < +0.4, +0.23 < [Y/Fe] < +0.43, 0.0 < [Zr/Fe] < +0.4, 0.0 < [La/Fe] < +0.35,and 0.05 < [Ba/Fe] < +0.55.Comment: date of acceptation: 31/07/2014, in press, 24 pages, 19 figures,Astronomy & Astrophysics, 201

    First Measurement of the 64Ni(gamma,n)63Ni Cross Section

    Get PDF
    Copyright owned by the author(s) under the terms of the Creative Commons Attribution-Non Commercial-ShareAlike LicenceIn the past 10 years new and more accurate stellar neutron capture cross section measurements have changed and improved the abundance predictions of the weak s process. Among other elements in the region between iron and strontium, most of the copper abundance observed today in the solar system distribution was produced by the s process in massive stars. However, experimental data for the stellar 63Ni(n,gamma)64Ni cross section are still missing, but is strongly required for a reliable prediction of the copper abundances. 63Ni (t1/2 =101.2 a) is a branching point and also bottleneck in the weak s process flow, and abehaves differently during core He and shell C burning. During core He burning the reaction flow proceeds via beta-decay to 63Cu, and a change of the 63Ni(n,gamma)64Ni cross section would have no influence. However, this behavior changes at higher temperatures and neutron densities during the shell C burning phase. Under these conditions, a significant amount of the s process nucleosynthesis flow is passing through the channel 62Ni(n,gamma)63Ni(n,gamma)64Ni. At present only theoretical estimates are available for the 63Ni(n,gamma)64Ni cross section. The corresponding uncertainty affects the production of 63Cu in present s process nucleosynthesis calculations and propagates to the abundances of the heavier species up to A=70. So far, experimental information is also missing for the inverse 64Ni(gamma,n) channel. We have measured for the first time the 64Ni(gamma,n)63Ni cross section and also combined for the first time successfully the photoactivation technique with subsequent Accelerator Mass Spectrometry (AMS). The activations at the ELBE facility in Dresden-Rossendorf were followed by the 63Ni/64Ni determination with AMS at the MLL accelerator laboratory in Garching. First results indicate that theoretical predictions have overestimated this cross section up to now. If this also holds for the inverse channel 63Ni(n,gamma)64Ni, more 63Ni is accumulated during the high neutron density regime of the C shell that will contribute to the final abundance of 63Cu by radiogenic decay. In this case, also a lower s process efficiency is expected for the heavier species along the neutron capture path up to the Ga-Ge regio

    Shell-model studies of the astrophysical rp -process reactions S 34 (p,γ) Cl 35 and Cl 34g,m (p,γ) Ar 35

    Get PDF
    © 2020 American Physical Society. Background: Dust grains condensed in the outflows of presolar classical novae should have been present in the protosolar nebula. Candidates for such presolar nova grains have been found in primitive meteorites and can in principle be identified by their isotopic ratios, but the ratios predicted by state-of-the-art one-dimensional hydrodynamic models are uncertain due to nuclear-physics uncertainties. Purpose: To theoretically calculate the thermonuclear rates and uncertainties of the S34(p,γ)Cl35 and Cl34g,m(p,γ)Ar35 reactions and investigate their impacts on the predicted S34/S32 isotopic ratio for presolar nova grains. Method: A shell-model approach in a (0+1) ħω model space was used to calculate the properties of resonances in the S34(p,γ)Cl35 and Cl34g,m(p,γ)Ar35 reactions and their thermonuclear rates. Uncertainties were estimated using a Monte Carlo method. The implications of these rates and their uncertainties on sulfur isotopic nova yields were investigated using a postprocessing nucleosynthesis code. The rates for transitions from the ground state of Cl34 as well as from the isomeric first excited state of Cl34 were explicitly calculated. Results: At energies in the resonance region near the proton-emission threshold, many negative-parity states appear. Energies, spectroscopic factors, and proton-decay widths are reported. The resulting thermonuclear rates are compared with previous determinations. Conclusions: The shell-model calculations alone are sufficient to constrain the variation of the S34/S32 ratios to within about 30%. Uncertainties associated with other reactions must also be considered, but in general we find that the S34/S32 ratios are not a robust diagnostic to clearly identify presolar grains made from nova ejecta
    corecore