60 research outputs found
CROSS-SHAPING – THE MORE EFFECTIVE NORDIC WALKING? RESULTS OF A BIOMECHANICAL FIELD STUDY
Cross-shaping is a new developed kind of nordic walking. The main difference between nordic walking and cross-shaping is the use of special sticks with forearm shells and wheels. The purpose of this study was to analyze the health effects of cross-shaping and to compare the results with own previous studies of nordic walking. Results clearly show positive health effects from cross-shaping, which are more extensive than in walking and nordic walking. Cross-shaping is harmonious similar to cross-country skiing in classic style. Push off is more effective than in nordic walking. Upper body is more erected and spine is relieved and mobilized effectively. Large parts of muscles of the upper and lower extremities were physiologically trained effective. Positive effects on the cardiovascular system are increased considerably compared to walking and nordic walking
Der Cross-Shaper: ein neues Sportgerät zum gesunden und effektiven Ganzkörpertraining – Ergebnisse einer biomechanischen Feldstudie
ZusammenfassungDer Cross-Shaper wurde entwickelt, um in den Bewegungsablauf des Walkens den Oberkörper effektiver einbeziehen zu können. Diese Feldstudie konnte deutlich positive gesundheitliche Effekte des Cross-Shapers zeigen, die umfassender ausgeprägt sind als beim Walking und Nordic Walking. Der Bewegungsverlauf ist harmonisch. Der stoßreduzierte Abdruck ist effektiver als beim Nordic Walking. Der Oberkörper wird vermehrt aufgerichtet und die Wirbelsäule effektiv entlastet und mobilisiert. Weite Teile der Muskulatur werden physiologisch gleichermaßen trainiert. Positive Effekte auf das Herz-Kreislauf-System sind gegenüber Walking und Nordic Walking deutlich erhöht.SummaryThe Cross-Shaper was developed to include the upper body more effectively in the motion sequence of walking. Results of this field study clearly show positive health effects from cross-shaper, which are pronounced more extensive than in walking and nordic walking. The path of movement is harmonious. The shock reduced push off is considerably more effective than in nordic walking. The upper body is increasingly erected and the spine is relieved and mobilized effectively. Large parts of muscles were physiologically trained equally effective. Positive effects on the cardiovascular system are increased considerably compared to walking and nordic walking
HIP- AND BACK-PROTECTORS IN SPORTS AND EVERYDAY LIFE - EFFECTIVE PROTECTION?
Hip and back protectors are recommended to reduce impact forces when falling in sports or everyday life. This study analyzed the shock-reducing effect of 29 different hip and back protectors using a drop test and a Kistler force plate. Our results showed large differences between the single protectors. Measured peak forces often and quickly exceeded the supposed limit of bone fracture strength. Therefore sufficient safety does not seem to exist yet and protectors must not be overestimated in their protection potential. In our opinion protectors should have a certain thickness preferably a combination of hardshell and viscoelastic material. Hip protectors for sports still show large deficits. Back protectors only protect against direct contusion but not against axial compressions or cervical spine
Ion-channel function and cross-species determinants in viral assembly of nonprimate hepacivirus p7
Nonprimate hepacivirus (NPHV), the closest homolog of hepatitis C virus (HCV) described to date, has recently been discovered in horses. Even though the two viruses share a similar genomic organization, conservation of the encoded hepaciviral proteins remains undetermined. The HCV p7 protein is localized within endoplasmic reticulum (ER) membranes and is important for the production of infectious particles. In this study, we analyzed the structural and functional features of NPHV p7 in addition to its role during virus assembly. Three-dimensional homology models for NPHV p7 using various nuclear magnetic resonance spectroscopy (NMR) structures were generated, highlighting the conserved residues important for ion channel function. By applying a liposome permeability assay, we observed that NPHV p7 exhibited liposome permeability features similar to those of HCV p7, indicative of similar ion channel activity. Next, we characterized the viral protein using a p7-based trans-complementation approach. A similar subcellular localization pattern at the ER membrane was observed, although production of infectious particles was likely hindered by genetic incompatibilities with HCV proteins. To further characterize these cross-species constraints, chimeric viruses were constructed by substituting different regions of HCV p7 with NPHV p7. The N terminus and transmembrane domains were nonexchangeable and therefore constitute a cross-species barrier in hepaciviral assembly. In contrast, the basic loop and the C terminus of NPHV p7 were readily exchangeable, allowing production of infectious trans-complemented viral particles. In conclusion, comparison of NPHV and HCV p7 revealed structural and functional homology of these proteins, including liposome permeability, and broadly acting determinants that modulate hepaciviral virion assembly and contribute to the host-species barrier were identified
Targeting a host-cell entry factor barricades antiviral-resistant HCV variants from on-therapy breakthrough in human-liver mice
Objective: Direct-acting antivirals (DAAs) inhibit hepatitis C virus (HCV) infection by targeting viral proteins that play essential roles in the replication process. However, selection of resistance-associated variants (RAVs) during DAA therapy has been a cause of therapeutic failure. In this study, we wished to address whether such RAVs could be controlled by the co-administration of host-targeting entry inhibitors that prevent intrahepatic viral spread.
Design: We investigated the effect of adding an entry inhibitor (the anti-scavenger receptor class B type I mAb1671) to a DAA monotherapy (the protease inhibitor ciluprevir) in human-liver mice chronically infected with HCV of genotype 1b. Clinically relevant non-laboratory strains were used to achieve viraemia consisting of a cloud of related viral variants (quasispecies) and the emergence of RAVs was monitored at high resolution using next-generation sequencing.
Results: HCV-infected human-liver mice receiving DAA monotherapy rapidly experienced on-therapy viral breakthrough. Deep sequencing of the HCV protease domain confirmed the manifestation of drug-resistant mutants upon viral rebound. In contrast, none of the mice treated with a combination of the DAA and the entry inhibitor experienced on-therapy viral breakthrough, despite detection of RAV emergence in some animals.
Conclusions: This study provides preclinical in vivo evidence that addition of an entry inhibitor to an anti-HCV DAA regimen restricts the breakthrough of DAA-resistant viruses. Our approach is an excellent strategy to prevent therapeutic failure caused by on-therapy rebound of DAA-RAVs. Inclusion of an entry inhibitor to the newest DAA combination therapies may further increase response rates, especially in difficult-to-treat patient populations
Physical activity and health promotion for nursing staff in elderly care: a study protocol for a randomised controlled trial
Introduction Nursing staff is burdened by high workload and stress. Furthermore, heavy lifting, as well as transferring nursing home residents, cause lumbar tissue damage and back pain. Exercise intervention studies to reduce work-related problems are rare and the evidence for efficacy of studies among nurses is limited. Studies including targeted analysis of requirements are necessary to generate effective recommendations and tailored interventions for health promotion programmes. The purpose of this multicentred intervention study is to identify work-related problems, to implement health promotion programmes and to evaluate their effectiveness.
Methods and analysis A randomised controlled trial will be conducted, including a total of 48 nursing home facilities in eight regions of Germany with an estimated sample size of 700 nurses. Standardised ergonomics and posture training (10 weeks, once a week for 20–30 min) and subsequently, back-fitness training (12 weeks, once a week for 45–60 min) will be administered. Following the implementation of standardised health promotion programmes, further demand-oriented interventions can be implemented. The perceived exposure to work-related demands, work-related pain in different parts of the body, health-related quality of life, perceived stress, work-related patterns of behaviour and experience, presentism behaviour, work environment as well as general needs and barriers to health promotion, will be assessed at baseline (pre-test), at 10 weeks (post-test, after ergonomics training), at 22 weeks (post-test, after back-fitness training) and at 34 weeks of the programme (follow-up).
Ethics and dissemination The study was reviewed and approved by the local ethics committee of the University of Hamburg (AZ: 2018_168). The results of the study will be published in open-access and international journals. Furthermore, the results will be presented in the participating nursing homes and at national and international conferences
Bile Acids Specifically Increase Hepatitis C Virus RNA-Replication
<div><h3>Background</h3><p>Hepatitis C virus (HCV) patients with high serum levels of bile acids (BAs) respond poorly to IFN therapy. BAs have been shown to increase RNA-replication of genotype 1 but not genotype 2a replicons. Since BAs modulate lipid metabolism including lipoprotein secretion and as HCV depends on lipids and lipoproteins during RNA-replication, virus production and cell entry, BAs may affect multiple steps of the HCV life cycle. Therefore, we analyzed the influence of BAs on individual steps of virus replication.</p> <h3>Methods</h3><p>We measured replication of subgenomic genotype (GT) 1b and 2a RNAs as well as full-length GT2a genomes in the presence of BAs using quantitative RT-PCR and luciferase assays. Cell entry was determined using HCV pseudoparticles (HCVpp). Virus assembly and release were quantified using a core-specific ELISA. Replicon chimeras were employed to characterize genotype-specific modulation of HCV by BAs. Lunet CD81/GFP-NLS-MAVS cells were used to determine infection of Con1 particles.</p> <h3>Results</h3><p>BAs increased RNA-replication of GT1b replicons up to 10-fold but had no effect on subgenomic GT2a replicons both in Huh-7 and HuH6 cells. They did not increase viral RNA translation, virus assembly and release or cell entry. Lowering replication efficiency of GT2a replicons rendered them susceptible to stimulation by BAs. Moreover, replication of full length GT1b with or without replication enhancing mutations and GT2a genomes were also stimulated by BAs.</p> <h3>Conclusions</h3><p>Bile acids specifically enhance RNA-replication. This is not limited to GT1, but also holds true for GT2a full length genomes and subgenomic replicons with low replication capacity. The increase of HCV replication by BAs may influence the efficacy of antiviral treatment in vivo and may improve replication of primary HCV genomes in cell culture.</p> </div
Completion of Hepatitis C Virus Replication Cycle in Heterokaryons Excludes Dominant Restrictions in Human Non-liver and Mouse Liver Cell Lines
Hepatitis C virus (HCV) is hepatotropic and only infects humans and chimpanzees. Consequently, an immunocompetent small animal model is lacking. The restricted tropism of HCV likely reflects specific host factor requirements. We investigated if dominant restriction factors expressed in non-liver or non-human cell lines inhibit HCV propagation thus rendering these cells non-permissive. To this end we explored if HCV completes its replication cycle in heterokaryons between human liver cell lines and non-permissive cell lines from human non-liver or mouse liver origin. Despite functional viral pattern recognition pathways and responsiveness to interferon, virus production was observed in all fused cells and was only ablated when cells were treated with exogenous interferon. These results exclude that constitutive or virus-induced expression of dominant restriction factors prevents propagation of HCV in these cell types, which has important implications for HCV tissue and species tropism. In turn, these data strongly advocate transgenic approaches of crucial human HCV cofactors to establish an immunocompetent small animal model
- …