48 research outputs found

    A synthetic peptide that prevents cAMP regulation in mammalian hyperpolarization-activated cyclic nucleotide-gated (HCN) channels

    Get PDF
    Binding of TRIP8b to the cyclic nucleotide binding domain (CNBD) of mammalian hyperpolarization-activated cyclic nucleotide-gated (HCN) channels prevents their regulation by cAMP. Since TRIP8b is expressed exclusively in the brain, we envisage that it can be used for orthogonal control of HCN channels beyond the central nervous system. To this end, we have identified by rational design a 40-aa long peptide (TRIP8bnano) that recapitulates affinity and gating effects of TRIP8b in HCN isoforms (hHCN1, mHCN2, rbHCN4) and in the cardiac current If in rabbit and mouse sinoatrial node cardiomyocytes. Guided by an NMR-derived structural model that identifies the key molecular interactions between TRIP8bnano and the HCN CNBD, we further designed a cell-penetrating peptide (TAT-TRIP8bnano) which successfully prevented β-adrenergic activation of mouse If leaving the stimulation of the L-type calcium current (ICaL) unaffected. TRIP8bnano represents a novel approach to selectively control HCN activation, which yields the promise of a more targeted pharmacology compared to pore blockers

    Electrical activity in neurons exposed to low level electromagnetic fields: theory and experiments

    Get PDF

    Rescuing cardiac automaticity in L-type Cav1.3 channelopathies and beyond

    No full text
    International audiencePacemaker activity of the sino-atrial node generates the heart rate. Disease of the sinus node and impairment of atrioventricular conduction induce an excessively low ventricular rate (bradycardia), which cannot meet the needs of the organism. Bradycardia accounts for about half of the total workload of clinical cardiologists. The 'sick sinus' syndrome (SSS) is characterized by sinus bradycardia and periods of intermittent atrial fibrillation. Several genetic or acquired risk factors or pathologies can lead to SSS. Implantation of an electronic pacemaker constitutes the only available therapy for SSS. The incidence of SSS is forecast to double over the next 50 years, with ageing of the general population thus urging the development of complementary or alternative therapeutic strategies. In recent years an increasing number of mutations affecting ion channels involved in sino-atrial automaticity have been reported to underlie inheritable SSS. L-type Cav 1.3 channels play a major role in the generation and regulation of sino-atrial pacemaker activity and atrioventricular conduction. Mutation in the CACNA1D gene encoding Cav 1.3 channels induces loss-of-function in channel activity and underlies the sino-atrial node dysfunction and deafness syndrome (SANDD). Mice lacking Cav 1.3 channels (Cav 1.3-/- ) fairly recapitulate SSS and constitute a precious model to test new therapeutic approaches to handle this disease. Work in our laboratory shows that targeting G protein-gated K+ (IKACh ) channels effectively rescues SSS of Cav 1.3-/- mice. This new concept of 'compensatory' ion channel targeting shines new light on the principles underlying the pacemaker mechanism and may open the way to new therapies for SSS

    Channelopathies of voltage-gated L-type Cav1.3/α1D and T-type Cav3.1/α1G Ca2+ channels in dysfunction of heart automaticity

    No full text
    International audienceThe heart automaticity is a fundamental physiological function in vertebrates. The cardiac impulse is generated in the sinus node by a specialized population of spontaneously active myocytes known as "pacemaker cells." Failure in generating or conducting spontaneous activity induces dysfunction in cardiac automaticity. Several families of ion channels are involved in the generation and regulation of the heart automaticity. Among those, voltage-gated L-type Cav1.3 (α1D) and T-type Cav3.1 (α1G) Ca2+ channels play important roles in the spontaneous activity of pacemaker cells. Ca2+ channel channelopathies specifically affecting cardiac automaticity are considered rare. Recent research on familial disease has identified mutations in the Cav1.3-encoding CACNA1D gene that underlie congenital sinus node dysfunction and deafness (OMIM # 614896). In addition, both Cav1.3 and Cav3.1 channels have been identified as pathophysiological targets of sinus node dysfunction and heart block, caused by congenital autoimmune disease of the cardiac conduction system. The discovery of channelopathies linked to Cav1.3 and Cav3.1 channels underscores the importance of Ca2+ channels in the generation and regulation of heart's automaticity

    The funny current in genetically modified mice

    No full text
    Since its first description in 1979, the hyperpolarization-activated funny current (I-f) has been the object of intensive research aimed at understanding its role in cardiac pacemaker activity and its modulation by the sympathetic and parasympathetic branches of the autonomic nervous system. I-f was described in isolated tissue strips of the rabbit sinoatrial node using the double-electrode voltage-clamp technique. Since then, the rabbit has been the principal animal model for studying pacemaker activity and I-f for more than 20 years. In 2001, the first study describing the electrophysiological properties of mouse sinoatrial pacemaker myocytes and those of I-f was published. It was soon followed by the description of murine myocytes of the atrioventricular node and the Purkinje fibres. The sinoatrial node of genetically modified mice has become a very popular model for studying the mechanisms of cardiac pacemaker activity. This field of research benefits from the impressive advancement of in-vivo exploration tech-niques of physiological parameters, imaging, genetics, and large-scale genomic approaches. The present review discusses the influence of mouse genetic on the most recent knowledge of the funny current's role in the physiology and pathophysiology of cardiac pacemaker activity. Genetically modified mice have provided important insights into the role of I-f in determining intrinsic automaticity in vivo and in myocytes of the conduction system. In addition, gene targeting of f-(HCN) channel isoforms have contributed to elucidating the current's role in the regulation of heart rate by the parasympathetic nervous system. This review is dedicated to Dario DiFrancesco on his retirement. (C) 2021 Published by Elsevier Ltd

    Pharmacologic Approach to Sinoatrial Node Dysfunction

    No full text
    International audienceThe spontaneous activity of the sinoatrial node initiates the heartbeat. Sinoatrial node dysfunction (SND) and sick sinoatrial syndrome are caused by the heart's inability to generate a normal sinoatrial node action potential. In clinical practice, SND is generally considered an age-related pathology, secondary to degenerative fibrosis of the heart pacemaker tissue. However, other forms of SND exist, including idiopathic primary SND, which is genetic, and forms that are secondary to cardiovascular or systemic disease. The incidence of SND in the general population is expected to increase over the next half century, boosting the need to implant electronic pacemakers. During the last two decades, our knowledge of sinoatrial node physiology and of the pathophysiological mechanisms underlying SND has advanced considerably. This review summarizes the current knowledge about SND mechanisms and discusses the possibility of introducing new pharmacologic therapies for treating SND
    corecore