217 research outputs found

    A new statistical model for binge drinking pattern classification in college-student populations

    Get PDF
    BackgroundBinge drinking (BD) among students is a frequent alcohol consumption pattern that produces adverse consequences. A widely discussed difficulty in the scientific community is defining and characterizing BD patterns. This study aimed to find homogenous drinking groups and then provide a new tool, based on a model that includes several key factors of BD, to assess the severity of BD regardless of the individual’s gender.MethodsUsing the learning sample (N1 = 1,271), a K-means clustering algorithm and a partial proportional odds model (PPOM) were used to isolate drinking and behavioral key factors, create homogenous groups of drinkers, and estimate the probability of belonging to these groups. Robustness of our findings were evaluated with Two validations samples (N2 = 2,310, N3 = 120) of French university students (aged 18–25 years) were anonymously investigated via demographic and alcohol consumption questionnaires (AUDIT, AUQ, Alcohol Purchase Task for behavioral economic indices).ResultsThe K-means revealed four homogeneous groups, based on drinking profiles: low-risk, hazardous, binge, and high-intensity BD. The PPOM generated the probability of each participant, self-identified as either male or female, to belong to one of these groups. Our results were confirmed in two validation samples, and we observed differences between the 4 drinking groups in terms of consumption consequences and behavioral economic demand indices.ConclusionOur model reveals a progressive severity in the drinking pattern and its consequences and may better characterize binge drinking among university student samples. This model provides a new tool for assessing the severity of binge drinking and illustrates that frequency of drinking behavior and particularly drunkenness are central features of a binge drinking model

    Increased GABAA Receptor ε-Subunit Expression on Ventral Respiratory Column Neurons Protects Breathing during Pregnancy

    Get PDF
    GABAergic signaling is essential for proper respiratory function. Potentiation of this signaling with allosteric modulators such as anesthetics, barbiturates, and neurosteroids can lead to respiratory arrest. Paradoxically, pregnant animals continue to breathe normally despite nearly 100-fold increases in circulating neurosteroids. ε subunit-containing GABAARs are insensitive to positive allosteric modulation, thus we hypothesized that pregnant rats increase ε subunit-containing GABAAR expression on brainstem neurons of the ventral respiratory column (VRC). In vivo, pregnancy rendered respiratory motor output insensitive to otherwise lethal doses of pentobarbital, a barbiturate previously used to categorize the ε subunit. Using electrode array recordings in vitro, we demonstrated that putative respiratory neurons of the preBötzinger Complex (preBötC) were also rendered insensitive to the effects of pentobarbital during pregnancy, but unit activity in the VRC was rapidly inhibited by the GABAAR agonist, muscimol. VRC unit activity from virgin and post-partum females was potently inhibited by both pentobarbital and muscimol. Brainstem ε subunit mRNA and protein levels were increased in pregnant rats, and GABAAR ε subunit expression co-localized with a marker of rhythm generating neurons (neurokinin 1 receptors) in the preBötC. These data support the hypothesis that pregnancy renders respiratory motor output and respiratory neuron activity insensitive to barbiturates, most likely via increased ε subunit-containing GABAAR expression on respiratory rhythm-generating neurons. Increased ε subunit expression may be critical to preserve respiratory function (and life) despite increased neurosteroid levels during pregnancy

    Expression and Function of Serotonin 2A and 2B Receptors in the Mammalian Respiratory Network

    Get PDF
    Neurons of the respiratory network in the lower brainstem express a variety of serotonin receptors (5-HTRs) that act primarily through adenylyl cyclase. However, there is one receptor family including 5-HT2A, 5-HT2B, and 5-HT2C receptors that are directed towards protein kinase C (PKC). In contrast to 5-HT2ARs, expression and function of 5-HT2BRs within the respiratory network are still unclear. 5-HT2BR utilizes a Gq-mediated signaling cascade involving calcium and leading to activation of phospholipase C and IP3/DAG pathways. Based on previous studies, this signal pathway appears to mediate excitatory actions on respiration. In the present study, we analyzed receptor expression in pontine and medullary regions of the respiratory network both at the transcriptional and translational level using quantitative RT-PCR and self-made as well as commercially available antibodies, respectively. In addition we measured effects of selective agonists and antagonists for 5-HT2ARs and 5-HT2BRs given intra-arterially on phrenic nerve discharges in juvenile rats using the perfused brainstem preparation. The drugs caused significant changes in discharge activity. Co-administration of both agonists revealed a dominance of the 5-HT2BR. Given the nature of the signaling pathways, we investigated whether intracellular calcium may explain effects observed in the respiratory network. Taken together, the results of this study suggest a significant role of both receptors in respiratory network modulation

    The role of the melatoninergic system in epilepsy and comorbid psychiatric disorders

    Get PDF
    Abstract There is emerging evidence of the beneficial role of the melatonin system in a wide range of psychiatric and neurologic disorders, including anxiety, depression, and epilepsy. Although melatoninergic drugs have chronobiotic and antioxidant properties that positively influence circadian rhythm desynchronization and neuroprotection in neurodegenerative disorders, studies examining the use of melatonin for epilepsy's comorbid psychiatric and neurological symptomatology are still limited. Preclinical and clinical findings on the beneficial effects of the melatonin system on anxiety, depression, and epilepsy suggest that melatoninergic compounds might be effective in treating comorbid behavioral complications in epilepsy beyond regulation of a disturbed sleep-wake cycle

    Long Term Depression in Rat Hippocampus and the Effect of Ethanol during Fetal Life

    No full text
    Alcohol (ethanol) disturbs cognitive functions including learning and memory in humans, non-human primates, and laboratory animals such as rodents. As studied in animals, cellular mechanisms for learning and memory include bidirectional synaptic plasticity, long-term potentiation (LTP), and long-term depression (LTD), primarily in the hippocampus. Most of the research in the field of alcohol has analyzed the effects of ethanol on LTP; however, with recent advances in the understanding of the physiological role of LTD in learning and memory, some authors have examined the effects of ethanol exposure on this particular signal. In the present review, I will focus on hippocampal LTD recorded in rodents and the effects of fetal alcohol exposure on this signal. A synthesis of the findings indicates that prenatal ethanol exposure disturbs LTD concurrently with LTP in offspring and that both glutamatergic and γ-aminobutyric acid (GABA) neurotransmissions are altered and contribute to LTD disturbances. Although the ultimate mode of action of ethanol on these two transmitter systems is not yet clear, novel suggestions have recently appeared in the literature

    ATP‐sensitive K +

    No full text
    corecore