16 research outputs found

    Circulating adrenomedullin estimates survival and reversibility of organ failure in sepsis: the prospective observational multinational Adrenomedullin and Outcome in Sepsis and Septic Shock-1 (AdrenOSS-1) study

    Get PDF
    Background: Adrenomedullin (ADM) regulates vascular tone and endothelial permeability during sepsis. Levels of circulating biologically active ADM (bio-ADM) show an inverse relationship with blood pressure and a direct relationship with vasopressor requirement. In the present prospective observational multinational Adrenomedullin and Outcome in Sepsis and Septic Shock 1 (, AdrenOSS-1) study, we assessed relationships between circulating bio-ADM during the initial intensive care unit (ICU) stay and short-term outcome in order to eventually design a biomarker-guided randomized controlled trial. Methods: AdrenOSS-1 was a prospective observational multinational study. The primary outcome was 28-day mortality. Secondary outcomes included organ failure as defined by Sequential Organ Failure Assessment (SOFA) score, organ support with focus on vasopressor/inotropic use, and need for renal replacement therapy. AdrenOSS-1 included 583 patients admitted to the ICU with sepsis or septic shock. Results: Circulating bio-ADM levels were measured upon admission and at day 2. Median bio-ADM concentration upon admission was 80.5 pg/ml [IQR 41.5-148.1 pg/ml]. Initial SOFA score was 7 [IQR 5-10], and 28-day mortality was 22%. We found marked associations between bio-ADM upon admission and 28-day mortality (unadjusted standardized HR 2.3 [CI 1.9-2.9]; adjusted HR 1.6 [CI 1.1-2.5]) and between bio-ADM levels and SOFA score (p < 0.0001). Need of vasopressor/inotrope, renal replacement therapy, and positive fluid balance were more prevalent in patients with a bio-ADM > 70 pg/ml upon admission than in those with bio-ADM ≤ 70 pg/ml. In patients with bio-ADM > 70 pg/ml upon admission, decrease in bio-ADM below 70 pg/ml at day 2 was associated with recovery of organ function at day 7 and better 28-day outcome (9.5% mortality). By contrast, persistently elevated bio-ADM at day 2 was associated with prolonged organ dysfunction and high 28-day mortality (38.1% mortality, HR 4.9, 95% CI 2.5-9.8). Conclusions: AdrenOSS-1 shows that early levels and rapid changes in bio-ADM estimate short-term outcome in sepsis and septic shock. These data are the backbone of the design of the biomarker-guided AdrenOSS-2 trial. Trial registration: ClinicalTrials.gov, NCT02393781. Registered on March 19, 2015

    Key Learning Outcomes for Clinical Pharmacology and Therapeutics Education in Europe: A Modified Delphi Study.

    Get PDF
    Harmonizing clinical pharmacology and therapeutics (CPT) education in Europe is necessary to ensure that the prescribing competency of future doctors is of a uniform high standard. As there are currently no uniform requirements, our aim was to achieve consensus on key learning outcomes for undergraduate CPT education in Europe. We used a modified Delphi method consisting of three questionnaire rounds and a panel meeting. A total of 129 experts from 27 European countries were asked to rate 307 learning outcomes. In all, 92 experts (71%) completed all three questionnaire rounds, and 33 experts (26%) attended the meeting. 232 learning outcomes from the original list, 15 newly suggested and 5 rephrased outcomes were included. These 252 learning outcomes should be included in undergraduate CPT curricula to ensure that European graduates are able to prescribe safely and effectively. We provide a blueprint of a European core curriculum describing when and how the learning outcomes might be acquired

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    The Borders Of E.U. Tax Policy And U.S. Competitiveness

    Get PDF
    International audiencePurposeData for ANCA-associated vasculitis (AAV) patients requiring intensive care are scarce.MethodsWe included 97 consecutive patients with acute AAV manifestations (new onset or relapsing disease), admitted to 18 intensive care units (ICUs) over a 10-year period (2002–2012). A group of 95 consecutive AAV patients with new onset or relapsing disease, admitted to two nephrology departments with acute vasculitis manifestations, constituted the control group.ResultsIn the ICU group, patients predominantly showed granulomatosis with polyangiitis and proteinase-3 ANCAs. Compared with the non-ICU group, the ICU group showed comparable Birmingham vasculitis activity score and a higher frequency of heart, central nervous system and lungs involvements. Respiratory assistance, renal replacement therapy and vasopressors were required in 68.0, 56.7 and 26.8% of ICU patients, respectively. All but one patient (99%) received glucocorticoids, 85.6% received cyclophosphamide, and 49.5% had plasma exchanges as remission induction regimens. Fifteen (15.5%) patients died during the ICU stay. The following were significantly associated with ICU mortality in the univariate analysis: the need for respiratory assistance, the use of vasopressors, the occurrence of at least one infection event in ICU, cyclophosphamide treatment, sequential organ failure assessment at admission and simplified acute physiology score II. After adjustment on sequential organ failure assessment or infection, cyclophosphamide was no longer a risk factor for mortality. Despite a higher initial mortality rate of ICU patients within the first hospital stay (p < 0.0001), the long-term mortality of hospital survivors did not differ between ICU and non-ICU groups (18.6 and 20.4%, respectively, p = 0.36). Moreover, we observed no renal survival difference between groups after a 1-year follow-up (82.1 and 80.5%, p = 0.94).ConclusionThis study supports the idea that experiencing an ICU challenge does not impact the long-term prognosis of AAV patients

    Corticosteroid therapy for critically ill patients with COVID-19: A structured summary of a study protocol for a prospective meta-analysis of randomized trials

    Get PDF
    Objectives: Primary objective: To estimate the effect of corticosteroids compared with usual care or placebo on mortality up to 28 days after randomization. Secondary objectives: To examine whether the effect of corticosteroids compared with usual care or placebo on mortality up to 28 days after randomization varies between subgroups related to treatment characteristics, disease severity at the time of randomization, patient characteristics, or risk of bias. To examine the effect of corticosteroids compared with usual care or placebo on serious adverse events. Study design: Prospective meta-analysis of randomized controlled trials. Both placebo-controlled and open-label trials are eligible. Participants: Hospitalised, critically ill patients with suspected or confirmed COVID-19. Intervention and comparator: Intervention groups will have received therapeutic doses of a steroid (dexamethasone, hydrocortisone or methylprednisolone) with IV or oral administration immediately after randomization. The comparator groups will have received standard of care or usual care or placebo. Main outcome: All-cause mortality up to 28 days after randomization. Search methods: Systematic searching of clinicaltrials.gov, EudraCT, the WHO ISRCTN registry, and the Chinese clinical trials registry. Additionally, research and WHO networks will be asked for relevant trials. Risk of bias assessments: These will be based on the Cochrane RoB 2 tool, and will use structured information provided by the trial investigators on a form designed for this prospective meta-analysis. Summary of findings: We will use GRADE to assess the certainty of the evidence. Statistical analyses: Trial investigators will provide data on the numbers of participants who did and did not experience each outcome according to intervention group, overall and in specified subgroups. We will conduct fixed-effect (primary analysis) and random-effects (Paule-Mandel estimate of heterogeneity and Hartung-Knapp adjustment) meta-analyses. We will quantify inconsistency in effects between trials using I2 statistics. Evidence for subgroup effects will be quantified by ratios of odds ratios comparing effects in the subgroups, and corresponding interaction p-values. Comparisons between subgroups defined by trial characteristics will be made using random-effects meta-regression. Comparisons between subgroups defined by patient characteristics will be made by estimating trial-specific ratios of odds ratios comparing intervention effects between subgroups then combining these using random-effects meta-analysis. Steroid interventions will be classified as high or low dose according to whether the dose is greater or less than or equal to 400 mg hydrocortisone per day or equivalent. We will use network meta-analysis methods to make comparisons between the effects of high and low dose steroid interventions (because one trial randomized participants to both low and high dose steroid arms). PROSPERO registration number CRD42020197242 Full protocol: The full protocol for this prospective meta-analysis is attached as an additional file, accessible from the Trials website (Additional file 1). To expedite dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol for the systematic review.Medicine, Faculty ofNon UBCPediatrics, Department ofReviewedFacult
    corecore