11 research outputs found

    The radio properties of high-excitation radio galaxies with intermediate radio powers

    Get PDF
    In the past decade, high-sensitivity radio surveys have revealed that the local radio active galactic nucleus population is dominated by moderate-to-low power sources with emission that is compact on galaxy scales. High-excitation radio galaxies (HERGs) with intermediate radio powers (22.5 < log (L1.4 GHz) < 25.0 W Hz−1) form an important sub-group of this population, since there is strong evidence that they also drive multiphase outflows on the scales of galaxy bulges. Here, we present high-resolution Very Large Array observations at 1.5, 4.5, and 7.5 GHz of a sample of 16 such HERGs in the local universe (z < 0.1), conducted in order to investigate the morphology, extent, and spectra of their radio emission in detail, down to sub-kpc scales. We find that the majority (56 per cent) have unresolved structures at the limiting angular resolution of the observations (∼0.3 arcsec). Although similar in the compactness of their radio structures, these sources have steep radio spectra and host galaxy properties that distinguish them from local low-excitation radio galaxies that are unresolved on similar scales. The remaining sources exhibit extended radio structures with projected diameters ∼1.4–19.0 kpc and a variety of morphologies: three double-lobed; two large-scale diffuse; one jetted and ‘S-shaped’; one undetermined. Only 19 per cent of the sample therefore exhibit the double-lobed/edge-brightened structures often associated with their counterparts at high and low radio powers: radio-powerful HERGs and Seyfert galaxies, respectively. Additional high-resolution observations are required to investigate this further, and to probe the ≲300 pc scales on which some Seyfert galaxies show extended structures

    Do AGN triggering mechanisms vary with radio power? – I. Optical morphologies of radio-intermediate HERGs

    Get PDF
    Active galactic nuclei (AGNs) with intermediate radio powers are capable of driving multiphase outflows in galaxy bulges, and are also more common than their high-radio-power counterparts. In-depth characterization of the typical host galaxies and likely triggering mechanisms for this population is therefore required in order to better understand the role of radio AGN feedback in galaxy evolution. Here, we use deep optical imaging data to study the detailed host morphologies of a complete sample of 30 local radio AGNs with high-excitation optical emission (HERG) spectra and intermediate radio powers [ z 25.0 W Hz-1] with strong optical emission lines: 53 ± 9 per cent compared with 94 ± 4 per cent. In addition, the most radio-powerful half of the sample has a higher frequency of morphological disturbance than the least radio-powerful half (67 ± 12 per cent and 40 ± 13 per cent, respectively), including the eight most highly disturbed galaxies. This suggests that the importance of triggering nuclear activity in high-excitation radio galaxies (HERGs) through mergers and interactions reduces with radio power. Both visual inspection and detailed light profile modelling reveal a mixed population of early-type and late-type morphologies, contrary to the massive elliptical galaxy hosts of radio-powerful AGNs. The prevalence of late-type hosts could suggest that triggering via secular, disc-based processes has increased importance for HERGs with lower radio powers (e.g. disc instabilities and large-scale bars)

    Warm molecular and ionized gas kinematics in the type-2 quasar J0945+1737

    Get PDF
    We analyse Near-Infrared Integral Field Spectrograph (NIFS) observations of the type-2 quasar (QSO2) SDSS J094521.33+173753.2 to investigate its warm molecular and ionized gas kinematics. This QSO2 has a bolometric luminosity of 1045.7 erg s−1 and a redshift of z = 0.128. The K-band spectra provided by NIFS cover a range of 1.99–2.40 μm where low ionization (Paα and Brδ), high ionization ([S XI]λ1.920 μm and [Si VI]λ1.963 μm), and warm molecular lines (from H21-0S(5) to 1-0S(1)) are detected, allowing us to study the multi-phase gas kinematics. Our analysis reveals gas in ordinary rotation in all the emission lines detected and also outflowing gas in the case of the low and high ionization emission lines. In the case of the nuclear spectrum, which corresponds to a circular aperture of 0.3″ (686 pc) in diameter, the warm molecular lines can be characterized using a single Gaussian component of full width at half maximum (FWHM) = 350 − 400 km s−1, while Paα, Brδ, and [Si VI] are best fitted with two blue-shifted Gaussian components of FWHM ∼ 800 and 1700 km s−1, in addition to a narrow component of ∼300 km s−1. We interpret the blue-shifted broad components as outflowing gas, which reaches the highest velocities, of up to −840 km s−1, in the south-east direction (PA ∼ 125°), extending up to a distance of ∼3.4 kpc from the nucleus. The ionized outflow has a maximum mass outflow rate of Ṁout,max = 42–51 M⊙ yr−1, and its kinetic power represents 0.1% of the quasar bolometric luminosity. Very Large Array (VLA) data of J0945 show extended radio emission (PA ∼ 100°) that is aligned with the clumpy emission traced by the narrow component of the ionized lines up to scales of several kiloparsecs, and with the innermost part of the outflow (central ∼0.4″ = 915 pc). Beyond that radius, at the edge of the radio jet, the high velocity gas shows a different PA of ∼125°. This might be an indication that the line-emitting gas is being compressed and accelerated by the shocks generated by the radio jet

    Do AGN triggering mechanisms vary with radio power? – II. The importance of mergers as a function of radio power and optical luminosity

    Get PDF
    Investigation of the triggering mechanisms of radio active galactic nuclei (radio AGN) is important for improving our general understanding of galaxy evolution. In the first paper in this series, detailed morphological analysis of high-excitation radio galaxies (HERGs) with intermediate radio powers suggested that the importance of triggering via galaxy mergers and interactions increases strongly with AGN radio power and weakly with optical emission-line luminosity. Here, we use an online classification interface to expand our morphological analysis to a much larger sample of 155 active galaxies (3CR radio galaxies, radio-intermediate HERGs, and Type 2 quasars) that covers a broad range in both 1.4 GHz radio power and [O III] λ5007 emission-line luminosity. All active galaxy samples are found to exhibit excesses in their rates of morphological disturbance relative to 378 stellar-mass- and redshift-matched non-active control galaxies classified randomly and blindly alongside them. These excesses are highest for the 3CR HERGs (4.7σ) and Type 2 quasar hosts (3.9σ), supporting the idea that galaxy mergers provide the dominant triggering mechanism for these subgroups. When the full active galaxy sample is considered, there is clear evidence to suggest that the enhancement in the rate of disturbance relative to the controls increases strongly with [O III] λ5007 emission-line luminosity but not with 1.4 GHz radio power. Evidence that the dominant AGN host types change from early-type galaxies at high radio powers to late-type galaxies at low radio powers is also found, suggesting that triggering by secular, disc-based processes holds more importance for lower-power radio AGN

    Warm molecular and ionized gas kinematics in the type-2 quasar J0945+1737

    Get PDF
    We analyse Near-Infrared Integral Field Spectrograph (NIFS) observations of the type-2 quasar (QSO2) SDSS J094521.33+173753.2 to investigate its warm molecular and ionized gas kinematics. This QSO2 has a bolometric luminosity of 1045.7 erg s−1 and a redshift of z = 0.128. The K-band spectra provided by NIFS cover a range of 1.99–2.40 μm where low ionization (Paα and Brδ), high ionization ([S XI]λ1.920 μm and [Si VI]λ1.963 μm), and warm molecular lines (from H21-0S(5) to 1-0S(1)) are detected, allowing us to study the multi-phase gas kinematics. Our analysis reveals gas in ordinary rotation in all the emission lines detected and also outflowing gas in the case of the low and high ionization emission lines. In the case of the nuclear spectrum, which corresponds to a circular aperture of 0.3″ (686 pc) in diameter, the warm molecular lines can be characterized using a single Gaussian component of full width at half maximum (FWHM) = 350 − 400 km s−1, while Paα, Brδ, and [Si VI] are best fitted with two blue-shifted Gaussian components of FWHM ∼ 800 and 1700 km s−1, in addition to a narrow component of ∼300 km s−1. We interpret the blue-shifted broad components as outflowing gas, which reaches the highest velocities, of up to −840 km s−1, in the south-east direction (PA ∼ 125°), extending up to a distance of ∼3.4 kpc from the nucleus. The ionized outflow has a maximum mass outflow rate of Ṁout,max = 42–51 M⊙ yr−1, and its kinetic power represents 0.1% of the quasar bolometric luminosity. Very Large Array (VLA) data of J0945 show extended radio emission (PA ∼ 100°) that is aligned with the clumpy emission traced by the narrow component of the ionized lines up to scales of several kiloparsecs, and with the innermost part of the outflow (central ∼0.4″ = 915 pc). Beyond that radius, at the edge of the radio jet, the high velocity gas shows a different PA of ∼125°. This might be an indication that the line-emitting gas is being compressed and accelerated by the shocks generated by the radio jet

    The effect of minor and major mergers on the evolution of low-excitation radio galaxies

    Get PDF
    We use deep, μ r lesssim 28 mag arcsec−2, r-band imaging from the Dark Energy Camera Legacy Survey to search for past, or ongoing, merger activity in a sample of 282 low-excitation radio galaxies (LERGs) at z 4σ excess of major mergers in the LERGs with M * lesssim 1011 M⊙, with 10 ± 1.5% of these active galactic nuclei involved in such large-scale interactions compared to 3.2 ± 0.4% of control galaxies. This excess of major mergers in LERGs decreases with increasing stellar mass, vanishing by M * > 1011.3 M⊙. These observations show that minor mergers do not fuel LERGs, and are consistent with typical LERGs being powered by accretion of matter from their halo. Where LERGs are associated with major mergers, these objects may evolve into more efficiently accreting active galactic nuclei as the merger progresses and more gas falls on to the central engine

    The diverse cold molecular gas contents, morphologies, and kinematics of type-2 quasars as seen by ALMA

    Get PDF
    We present CO(2−1) and adjacent continuum observations of seven nearby radio-quiet type-2 quasars (QSO2s) obtained with ALMA at ∼0.2″ resolution (370 pc at z  ∼ 0.1). These QSO2s are luminous ( L [OIII]  &gt; 10 8.5 L ⊙  ∼   M B  &lt; −23), and their host galaxies massive ( M *  ∼ 10 11   M ⊙ ). The CO morphologies are diverse, including disks and interacting systems. Two of the QSO2s are red early-type galaxies with no CO(2–1) detected. In the interacting galaxies, the central kiloparsec contains 18–25% of the total cold molecular gas, whereas in the spirals it is only ∼5–12%. J1010+0612 and J1430+1339 show double-peaked CO flux maps along the major axis of the CO disks that do not have an optical counterpart at the same angular resolution. Based on our analysis of the ionized and molecular gas kinematics and millimeter continuum emission, these CO morphologies are most likely produced by active galactic nucleus (AGN) feedback in the form of outflows, jets, and/or shocks. The CO kinematics of the QSO2s with CO(2−1) detections are dominated by rotation but also reveal noncircular motions. According to our analysis, these noncircular motions correspond to molecular outflows that are mostly coplanar with the CO disks in four of the QSO2s, and either to a coplanar inflow or vertical outflow in the case of J1010+0612. These outflows represent 0.2–0.7% of the QSO2s’ total molecular gas mass and have maximum velocities of 200–350 km s −1 , radii from 0.4 to 1.3 kpc, and outflow mass rates of 8–16 M ⊙ yr −1 . These outflow properties are intermediate between those of the mild molecular outflows measured for Seyfert galaxies and the fast and energetic outflows shown by ultra-luminous infrared galaxies. This suggests that it is not only AGN luminosity that drives massive molecular outflows. Other factors such as jet power, coupling between winds, jets, and/or ionized outflows and the CO disks, and amount or geometry of dense gas in the nuclear regions might also be relevant. Thus, although we do not find evidence for a significant impact of quasar feedback on the total molecular gas reservoirs and star formation rates, it appears to be modifying the distribution of cold molecular gas in the central kiloparsec of the galaxies

    Water and small ruminant production A água e a produção de pequenos ruminantes

    Get PDF
    Water is a nutrient of extreme importance for animals and must be considered vital in any rearing phase. The increasing scarcity of this precious natural resource has concerned different segments of society in order to find solutions for rational and sustainable use of this nutrient. Small ruminants, especially sheep and goats, have social and economic importance due to their great ability in adapting to adverse environmental conditions and using water efficiently. Thus, they might be a good alternative to mitigate the climate change effects and to generate foreign exchange and improving life condition in many places of the world. The concept of water productivity for livestock production is relatively new and there are few studies in the world, especially in Brazil. More researches and new technologies for water use in livestock production are indispensable.<br>A água é um nutriente extremamente importante na vida dos animais e deve ser considerada como vital em qualquer fase da criação. A escassez crescente deste precioso recurso natural tem provocado reações de diferentes segmentos da sociedade na busca de soluções de uso racional e sustentável deste nutriente. Os pequenos ruminantes, especialmente os ovinos e caprinos, são partes importantes da vida econômica e social de muitas nações pela sua ampla capacidade de adaptação às condições adversas do ambiente e boa eficiência no uso da água, podendo ser uma das boas alternativas de mitigação dos efeitos das mudanças climáticas, gerando divisas e melhoria das condições de vida em muitas regiões do mundo. O conceito de produtividade de água para a produção animal é relativamente novo e ainda são recentes e escassos os estudos existentes no mundo e em particular no Brasil. A realização de mais pesquisas e a geração de novas tecnologias de uso da água na produção animal, hoje mais do que nunca tornam-se imprescindíveis
    corecore