1,246 research outputs found
Recent Developments in the Nuclear Many-Body Problem
The study of quantum chromodynamics (QCD) over the past quarter century has
had relatively little impact on the traditional approach to the low-energy
nuclear many-body problem. Recent developments are changing this situation. New
experimental capabilities and theoretical approaches are opening windows into
the richness of many-body phenomena in QCD. A common theme is the use of
effective field theory (EFT) methods, which exploit the separation of scales in
physical systems. At low energies, effective field theory can explain how
existing phenomenology emerges from QCD and how to refine it systematically.
More generally, the application of EFT methods to many-body problems promises
insight into the analytic structure of observables, the identification of new
expansion parameters, and a consistent organization of many-body corrections,
with reliable error estimates.Comment: 15 pages, 10 figures, plenary talk at the 11th Conference on Recent
Progress in Many-Body Theories (MB 11), Manchester, England, 9-13 Jul 200
Local three-nucleon interaction from chiral effective field theory
The three-nucleon (NNN) interaction derived within the chiral effective field
theory at the next-to-next-to-leading order (N2LO) is regulated with a function
depending on the magnitude of the momentum transfer. The regulated NNN
interaction is then local in the coordinate space, which is advantages for some
many-body techniques. Matrix elements of the local chiral NNN interaction are
evaluated in a three-nucleon basis. Using the ab initio no-core shell model
(NCSM) the NNN matrix elements are employed in 3H and 4He bound-state
calculations.Comment: 17 pages, 9 figure
Selecting and implementing overview methods: implications from five exemplar overviews
This is the final version of the article. Available from BioMed Central via the DOI in this record.Background
Overviews of systematic reviews are an increasingly popular method of evidence synthesis; there is a lack of clear guidance for completing overviews and a number of methodological challenges. At the UK Cochrane Symposium 2016, methodological challenges of five overviews were explored. Using data from these five overviews, practical implications to support methodological decision making of authors writing protocols for future overviews are proposed.
Methods
Methods, and their justification, from the five exemplar overviews were tabulated and compared with areas of debate identified within current literature. Key methodological challenges and implications for development of overview protocols were generated and synthesised into a list, discussed and refined until there was consensus.
Results
Methodological features of three Cochrane overviews, one overview of diagnostic test accuracy and one mixed methods overview have been summarised. Methods of selection of reviews and data extraction were similar. Either the AMSTAR or ROBIS tool was used to assess quality of included reviews. The GRADE approach was most commonly used to assess quality of evidence within the reviews.
Eight key methodological challenges were identified from the exemplar overviews. There was good agreement between our findings and emerging areas of debate within a recent published synthesis. Implications for development of protocols for future overviews were identified.
Conclusions
Overviews are a relatively new methodological innovation, and there are currently substantial variations in the methodological approaches used within different overviews. There are considerable methodological challenges for which optimal solutions are not necessarily yet known. Lessons learnt from five exemplar overviews highlight a number of methodological decisions which may be beneficial to consider during the development of an overview protocol.The overview conducted by Pollock [19] was supported by a project grant from the Chief Scientist Office of the Scottish Government. The overview conducted by McClurg [21] was supported by a project grant by the Physiotherapy Research Foundation. The overview by Hunt [22] was supported as part of doctoral programme funding by the National Institute for Health Research (NIHR) Collaboration for Leadership in Applied Health Research and Care South West Peninsula (PenCLAHRC). The overview conducted by Estcourt [20] was supported by an NIHR Cochrane Programme Grant for the Safe and Appropriate Use of Blood Components. The overview conducted by Brunton [23] was commissioned by the Department of Health as part of an ongoing programme of work on health policy research synthesis.
Alex Pollock is employed by the Nursing, Midwifery and Allied Health Professions (NMAHP) Research Unit, which is supported by the Chief Scientist Office of the Scottish Government. Pauline Campbell is supported by the Chief Nurses Office of the Scottish Government
Lattice Simulations for Light Nuclei: Chiral Effective Field Theory at Leading Order
We discuss lattice simulations of light nuclei at leading order in chiral
effective field theory. Using lattice pion fields and auxiliary fields, we
include the physics of instantaneous one-pion exchange and the leading-order
S-wave contact interactions. We also consider higher-derivative contact
interactions which adjust the S-wave scattering amplitude at higher momenta. By
construction our lattice path integral is positive definite in the limit of
exact Wigner SU(4) symmetry for any even number of nucleons. This SU(4)
positivity and the approximate SU(4) symmetry of the low-energy interactions
play an important role in suppressing sign and phase oscillations in Monte
Carlo simulations. We assess the computational scaling of the lattice algorithm
for light nuclei with up to eight nucleons and analyze in detail calculations
of the deuteron, triton, and helium-4.Comment: 44 pages, 15 figure
Charge-Symmetry Breaking and the Two-Pion-Exchange Two-Nucleon Interaction
Charge-symmetry breaking in the nucleon-nucleon force is investigated within
an effective field theory, using a classification of isospin-violating
interactions based on power-counting arguments. The relevant
charge-symmetry-breaking interactions corresponding to the first two orders in
the power counting are discussed, including their effects on the 3He-3H
binding-energy difference. The static charge-symmetry-breaking potential linear
in the nucleon-mass difference is constructed using chiral perturbation theory.
Explicit formulae in momentum and configuration spaces are presented. The
present work completes previously obtained results.Comment: 15 pages, 2 figure
Time-Dependent Current Partition in Mesoscopic Conductors
The currents at the terminals of a mesoscopic conductor are evaluated in the
presence of slowly oscillating potentials applied to the contacts of the
sample. The need to find a charge and current conserving solution to this
dynamic current partition problem is emphasized. We present results for the
electro-chemical admittance describing the long range Coulomb interaction in a
Hartree approach. For multiply connected samples we discuss the symmetry of the
admittance under reversal of an Aharonov-Bohm flux.Comment: 22 pages, 3 figures upon request, IBM RC 1971
Dynamic response of isolated Aharonov-Bohm rings coupled to an electromagnetic resonator
We have measured the flux dependence of both real and imaginary conductance
of isolated mesoscopic rings at 310 MHz. The rings are coupled to
a highly sensitive electromagnetic superconducting micro-resonator and lead to
a perturbation of the resonance frequency and quality factor. This experiment
provides a new tool for the investigation of the conductance of mesoscopic
systems without any connection to invasive probes. It can be compared with
recent theoretical predictions emphasizing the differences between isolated and
connected geometries and the relation between ac conductance and persistent
currents. We observe periodic oscillations on both components of the
magnetoconductance. The oscillations of the imaginary conductance whose sign
corresponds to diamagnetism in zero field, are 3 times larger than the Drude
conductance . The real part of the periodic magnetoconductance is of the
order of and is apparently negative in low field. It is thus notably
different from the weak localisation oscillations observed in connected rings,
which are much smaller and opposite in sign.Comment: 4 pages, revtex, epsf, 4 Postscript file
Modern topics in theoretical nuclear physics
Over the past five years there have been profound advances in nuclear physics
based on effective field theory and the renormalization group. In this brief,
we summarize these advances and discuss how they impact our understanding of
nuclear systems and experiments that seek to unravel their unknowns. We discuss
future opportunities and focus on modern topics in low-energy nuclear physics,
with special attention to the strong connections to many-body atomic and
condensed matter physics, as well as to astrophysics. This makes it an exciting
era for nuclear physics.Comment: 8 pages, 1 figure, prepared for the Nuclear Physics Town Hall Meeting
at TRIUMF, Sept. 9-10, 2005, comments welcome, references adde
Predictive tracking with improved motion models for optical belt sorting
Optical belt sorters are a versatile means to sort bulk materials. In previous work, we presented a novel design of an optical belt sorter, which includes an area scan camera instead of a line scan camera. Line scan cameras, which are well-established in optical belt sorting, only allow for a single observation of each particle. Using multitarget tracking, the data of the area scan camera can be used to derive a part of the trajectory of each particle. The knowledge of the trajectories can be used to generate accurate predictions as to when and where each particle passes the separation mechanism. Accurate predictions are key to achieve high quality sorting results. The accuracy of the trajectories and the predictions heavily depends on the motion model used. In an evaluation based on a simulation that provides us with ground truth trajectories, we previously identified a bias in the temporal component of the prediction. In this paper, we analyze the simulation-based ground truth data of the motion of different bulk materials and derive models specifically tailored to the generation of accurate predictions for particles traveling on a conveyor belt. The derived models are evaluated using simulation data involving three different bulk materials. The evaluation shows that the constant velocity model and constant acceleration model can be outperformed by utilizing the similarities in the motion behavior of particles of the same type
Sign Reversals of ac Magnetoconductance in Isolated Quantum Dots
We have measured the electromagnetic response of micron-size isolated
mesoscopic GaAs/GaAlAs square dots down to temperature T=16mK, by coupling them
to an electromagnetic micro-resonator. Both dissipative and non dissipative
responses exhibit a large magnetic field dependent quantum correction, with a
characteristic flux scale which corresponds to a flux quantum in a dot. The
real (dissipative) magnetoconductance changes sign as a function of frequency
for low enough density of electrons. The signal observed at frequency below the
mean level spacing corresponds to a negative magnetoconductance, which is
opposite to the weak localization seen in connected systems, and becomes
positive at higher frequency. We propose an interpretation of this phenomenon
in relation to fundamental properties of energy level spacing statistics in the
dots.Comment: 4 pages, 4 eps figure
- …