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Local three-nucleon interaction from chiral effective field theory

P. Navrátil∗

Lawrence Livermore National Laboratory, L-414, P.O. Box 808, Livermore, CA 94551, USA

(Dated: June 25, 2007)

The three-nucleon (NNN) interaction derived within the chiral effective field theory at the next-
to-next-to-leading order (N2LO) is regulated with a function depending on the magnitude of the
momentum transfer. The regulated NNN interaction is then local in the coordinate space, which
is advantages for some many-body techniques. Matrix elements of the local chiral NNN interaction
are evaluated in a three-nucleon basis. Using the ab initio no-core shell model (NCSM) the NNN
matrix elements are employed in 3H and 4He bound-state calculations.

PACS numbers: 21.60.Cs, 21.30.-x, 21.30.Fe

I. INTRODUCTION

Interactions among nucleons are governed by quantum chromodynamics (QCD). In the low-energy regime relevant
to nuclear structure, QCD is non-perturbative, and, therefore, hard to solve. Thus, theory has been forced to resort
to models for the interaction, which have limited physical basis. New theoretical developments, however, allow us
connect QCD with low-energy nuclear physics. The chiral effective field theory (χEFT) [1] provides a promising
bridge. Beginning with the pionic or the nucleon-pion system [2] one works consistently with systems of increasing
nucleon number [3–5]. One makes use of spontaneous breaking of chiral symmetry to systematically expand the strong
interaction in terms of a generic small momentum and takes the explicit breaking of chiral symmetry into account by
expanding in the pion mass. Thereby, the NN interaction, the NNN interaction and also πN scattering are related to
each other. At the same time, the pion mass dependence of the interaction is known, which will enable a connection
to lattice QCD calculations in the future [6]. Nuclear interactions are non-perturbative, because diagrams with purely
nucleonic intermediate states are enhanced [1]. Therefore, the chiral perturbation expansion is performed for the
potential (note, however, the discussion in Refs. [7] that points out some inconsitencies of this approach). Solving
the Schrödinger equation for this potential then automatically sums diagrams with purely nucleonic intermediate
states to all orders. The χEFT predicts, along with the NN interaction at the leading order, an NNN interaction
at the 3rd order (next-to-next-to-leading order or N2LO) [1, 8, 9], and even an NNNN interaction at the 4th order
(N3LO) [10]. The details of QCD dynamics are contained in parameters, low-energy constants (LECs), not fixed by
the symmetry. These parameters can be constrained by experiment. At present, high-quality NN potentials have
been determined at order N3LO [11]. A crucial feature of χEFT is the consistency between the NN, NNN and NNNN
parts. As a consequence, at N2LO and N3LO, except for two LECs, assigned to two NNN diagrams, the potential is
fully constrained by the parameters defining the NN interaction.

It is of great interest and also a challenge to apply the chiral interactions in nuclear structure and nuclear reaction
calculations. In a recent work [12], the presently available NN potential at N3LO [11] and the NNN interaction at
N2LO [8, 9] have been applied to the calculation of various properties of s- and p-shell nuclei, using the ab initio

no-core shell model (NCSM) [13, 14], up to now the only approach able to handle the nonlocal χEFT NN potentials
for systems beyond A = 4. In that study, a preferred choice of the two NNN LECs, cD and cE , was found and the
fundamental importance of the χEFT NNN interaction was demonstrated for reproducing the structure of mid-p-shell
nuclei. In a subsequent study, the same Hamiltonian was used to calculate microscopically the photo-absorption cross
section of 4He [15].

The approach of Ref. [12] differs in two aspects from the first NCSM application of the χEFT NN+NNN interactions
in Ref. [16], which presents a detailed investigation of 7Li. First, a regulator depending on the momentum transfer in
the NNN terms was introduced which results in a local χEFT NNN interaction. Second, the 4He binding energy was
not used exclusively as the second constraint on the cD and cE LECs.

A local NNN interaction is advantages for some few- and many-body approaches because it is simpler to use. At
the same time, it is known that details of the NNN interaction are important for nuclear structure applications. For
example, the Urbana IX [17] and the Tucson-Melbourne [18–20] NNN interactions perform differently in mid-p-shell
nuclei [14, 21, 22] although their differences appear to be minor. In the Green’s function Monte Carlo (GFMC)
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calculations with the AV18 NN potential [23], the best results for p-shell nuclei up to A = 10 are found using
the Illinois NNN interaction that augments the Urbana IX by a two-pion term from the Tucson-Melbourne NNN
interaction and by three-pion terms that in the χEFT appear beyond the N3LO [24, 25]. Contrary to the Illinois
NNN interaction, the χEFT NNN interaction features the above mentioned consistency with the accompanying NN
interaction. Still, interestingly, we found that the nonlocal χEFT NNN interaction used in Ref. [16] and the local
χEFT NNN interaction employed in Ref. [12] differ to some extent in their description of mid-p-shell nuclei with the
latter giving results in a better agreement with experiment. Therefore, it is important to pay attention to the details
of the NNN interaction and test different possibilities.

It is the purpose of this paper to elaborate on the details of the local χEFT NNN interaction used in Refs. [12, 15]
and present its matrix elements in the three-nucleon basis. Technical details of dealing with NNN interactions were
investigated in many papers [26–32]. A new feature in the present work is the use of χEFT contact interactions and
a focus on the application within the ab initio NCSM. In particular, we demonstrate the binding-energy convergence
of the three-nucleon and four-nucleon systems with the χEFT NN+NNN interactions using the ab initio NCSM. In
Sect. II, the local χEFT NNN interaction is discussed and compared to the nonlocal version of Ref. [9]. Its three-
nucleon matrix elements are given term by term. In Sect. III, the 3H and 4He binding energy and radius calculation
results using the N3LO χEFT NN interaction of Ref. [11] and the local χEFT NNN interaction are given. Conclusions
are drawn in Sect. IV.

II. LOCAL χEFT NNN INTERACTION AT N2LO

The NNN interaction appearing at the third order (N2LO) of the χEFT comprises of three parts: (i) The two-pion
exchange, (ii) the one-pion exchange plus contact and the three-nucleon contact. In this section, we discuss all the
parts in detail and present the three-nucleon matrix elements of all the terms. For the two parts that contain the
contact interactions, we also discuss in detail the impact of different regularization schemes.

A. Three-nucleon coordinates

We use the following definitions of the Jacobi coordinates

~ξ1 =
1√
2
(~r1 − ~r2) , (1)

~ξ2 =

√

2

3

(

1

2
(~r1 + ~r2) − ~r3

)

, (2)

and associated momenta

~π1 =
1√
2
(~p1 − ~p2) , (3)

~π2 =

√

2

3

(

1

2
(~p1 + ~p2) − ~p3

)

. (4)

We also define the momenta transferred by nucleon 2 and nucleon 3:

~Q = ~p′2 − ~p2 = − 1√
2
(~π′

1 − ~π1) +
1√
6
(~π′

2 − ~π2) , (5)

~Q′ = ~p′3 − ~p3 = −
√

2

3
(~π′

2 − ~π2) , (6)

where the primed coordinates refer to the initial momentum and the unprimed to the final momentum of the nucleon.

B. General structure of three-nucleon interaction and its matrix element

The NNN interaction is symmetric under permutation of the three nucleon indexes. It can be written as a sum of
three pieces related by particle permutations:

W = W1 + W2 + W3 (7)
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To obtain its matrix element in an antisymmetrized three-nucleon basis we need to consider just a single term, e.g.
W1. In this paper, we use the basis of harmonic oscillator (HO) wave functions. However, most of the expressions
have general validity. Following notation of Ref. [33], a general matrix element can be written as

〈NiJT |W |N ′i′JT 〉 = 3〈NiJT |W1|N ′i′JT 〉 = 3
∑

〈nlsjt,NLJ ||NiJT 〉〈n′l′s′j′t′,N ′L′J ′||N ′i′JT 〉
×〈(nlsjt,NLJ )JT |W1|(n′l′s′j′t′,N ′L′J ′)JT 〉 , (8)

where |NiJT 〉 is an antisymmetrized three-nucleon state with N = 2n+ l+2N +L, i an additional quantum number
and J and T the total angular momentum and total isospin, respectively. The parity of the state is (−1)N . The state

|(nlsjt,NLJ )JT 〉 is a product of the HO wave functions 〈~ξ1|nl〉 and 〈~ξ2|NL〉 associated with the coordinates (1)
and (2), respectively. This state is antisymmetrized only with respect to the exchange of nucleons 1 and 2, i.e.
(−1)l+s+t = −1. The coefficient of fractional parentage 〈nlsjt,NLJ ||NiJT 〉 is calculated according to Ref. [33].

C. N2LO three-nucleon interaction contact term

We start our discussion with the most trivial part of the χEFT N2LO NNN interaction, the three-nucleon contact
term

W cont
1 = E~τ2 · ~τ3δ(~r1 − ~r2)δ(~r3 − ~r1) = E~τ2 · ~τ3

1

(2π)6
1

(
√

3)3

∫

d~π1d~π2d~π′
1d~π′

2|~π1~π2〉〈~π′
1~π

′
2| , (9)

with E = cE

F 4
πΛχ

where Λχ is the chiral symmetry breaking scale of the order of the ρ meson mass and Fπ = 92.4 MeV

is the weak pion decay constant. The cE is a low-energy constant (LEC) from the chiral Lagrangian of order one.
The corresponding diagram is shown in Fig. 1. This term was regulated in Ref. [9] by a regulator dependent on the

3      1      2
FIG. 1: Contact interaction NNN term of the N2LO χEFT.

sum of Jacobi momenta squared:

W cont,ENGKMW
1 = E~τ2 · ~τ3

1

(2π)6
1

(
√

3)3

∫

d~π1d~π2d~π′
1d~π′

2|~π1~π2〉F (1
2 (π2

1 + π2
2); Λ)F (1

2 (π′2
1 + π′2

2 ); Λ)〈~π′
1~π

′
2| , (10)

with the regulator function

F (q2; Λ) = exp(−q4/Λ4) (11)

with the limit F (q2; Λ → ∞) = 1. This was in particular convenient as the calculations were performed in momentum
space.

Alternatively, let us consider a regulator dependent on momentum transfer:

W cont,Q
1 = E~τ2 · ~τ3

1

(2π)6
1

(
√

3)3

∫

d~π1d~π2d~π′
1d~π′

2|~π1~π2〉F ( ~Q2; Λ)F ( ~Q′2; Λ)〈~π′
1~π

′
2|

= E~τ2 · ~τ3

∫

d~ξ1d~ξ2|~ξ1
~ξ2〉Z0(

√
2ξ1; Λ)Z0(| 1√

2
~ξ1 +

√

3
2
~ξ2|; Λ)〈~ξ1

~ξ2| , (12)
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where we introduced the function

Z0(r; Λ) =
1

2π2

∫

dqq2j0(qr)F (q2; Λ) . (13)

This results in an interaction local in coordinate space because of the dependence of the regulator function on
differences of initial and final Jacobi momenta. An interaction local in coordinate space may be more convenient for
some methods. In fact, most of the NNN interactions used in few-body calculations, such as the Tucson-Melbourne
(TM′) [19, 20], Urbana IX (UIX) [17] or Illinois 2 (IL2) [24], are local in coordinate space.

The two alternatively regulated contact interactions lead to different three-nucleon matrix elements. The interac-
tion (10) gives

〈(nlsjt,NLJ )JT |W cont,ENGKMW
1 |(n′l′s′j′t′,N ′L′J ′)JT 〉

= E
1

2
√

3π4
δl0δL0δl′0δL′0δss′δsjδs′j′δJ 1

2

δJ ′ 1

2

t̂t̂′(−1)t+t′+T+
1
2

{

t t′ 1
1
2

1
2

1
2

}{

t t′ 1
1
2

1
2 T

}

×
∫

dπ1dπ2π
2
1π2

2(−1)(n+N )Rn0(π1,
1
b )RN0(π2,

1
b )F (1

2 (π2
1 + π2

2); Λ)

×
∫

dπ′
1dπ′

2π
′2
1 π′2

2 (−1)(n
′+N ′)Rn′0(π

′
1,

1
b )RN ′0(π

′
2,

1
b )F (1

2 (π′2
1 + π′2

2 ); Λ) , (14)

while the interaction (12) results in the following matrix element:

〈(nlsjt,NLJ )JT |W cont,Q
1 |(n′l′s′j′t′,N ′L′J ′)JT 〉

= E6δss′ t̂t̂′(−1)t+t′+T+
1
2

{

t t′ 1
1
2

1
2

1
2

}{

t t′ 1
1
2

1
2 T

}

ĵĵ′Ĵ Ĵ ′ l̂′L̂′(−1)J− 1
2 + J ′ − J + l + L + s

×
∑

X

(−1)XX̂2

{

l′ l X
j j′ s

}{

j j′ X
J ′ J J

}{

J ′ J X
L L′ 1

2

}

(l′0X0|l0)(L′0X0|L0)

×
∫

dξ1dξ2ξ
2
1ξ2

2Rnl(ξ1, b)RNL(ξ2, b)Rn′l′(ξ1, b)RN ′L′(ξ2, b)Z0(
√

2ξ1; Λ)Z0,X(
√

1
2ξ1,

√

3
2ξ2; Λ) . (15)

In the above expressions, we have introduced the radial HO wave functions Rnl with the oscillator parameter b and,
further, a new function

Z0,X(r1, r2; Λ) =
1

2π2

∫

dqq2jX(qr1)jX(qr2)F (q2; Λ) . (16)

We also introduced the customary abriviation l̂ =
√

2l + 1. It should be noted that the two differently regulated
contact interaction have different tensorial structure. One would perhaps expect that matrix elements of a local
interaction will be easier to calculate. This is not the case for the discussed contact interaction. From Eq. (14) we
can see that the term (10) acts only in S-waves. On the other hand, the local interaction (12) acts in higher partial
waves as well as seen from Eq. (15). We display this schematically in Fig. 2 by breaking the symmetry of the pure
contact interaction diagram (Fig. 1) and showing the finite range of the momentum transfer regulated interaction.
Using F (q2; Λ → ∞) = 1, Z0(r, Λ → ∞) = 1

4πr2 δ(r) and Z0,X(r1, r2; Λ → ∞) = 1
4πr2

1

δ(r1 − r2), it is straightforward

to verify that in the limit Λ → ∞ both expressions (14) and (15) lead to the same result. For completeness, let

us note that in Ref. [9] a matrix element of ~τ1 · ~τ2 was calculated, i.e. 〈~τ1 · ~τ2〉 = 6δtt′(−1)t−1

{

1
2

1
2 t

1
2

1
2 1

}

, instead

of ~τ2 · ~τ3 as we do in Eq. (14). Either choice lead to identical matrix element in the three-nucleon antisymmetrized
basis (8). This is not the case once we regulate with the momentum transfer. Our choice in (12) results in the same
isospin-coordinate structure as that obtained in Ref. [8].

D. Transformation of the momentum part of the NNN interaction

A general NNN interaction term is a product of isospin, spin and momentum parts. In this subsection, we manipulate
the momentum part. We only consider the case of the regulator function F (q2, Λ) depending on transfered momentum.
The momentum part of a general term W1 can be schematically written as

gK1
(| ~Q|; Λ)gK2

(| ~Q′|; Λ)(YK1
(Q̂)YK2

(Q̂′))(K) , (17)
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3      1       2
FIG. 2: Contact interaction NNN term of the N2LO χEFT regulated by a function depending on momentum transfer.

with K1 + K2 even and with ~Q and ~Q′ defined by Eqs. (3) and (4), respectively. For coordinates and momenta, Q̂

denotes the angular part of the vector ~Q. A transformation of (17) to coordinate space leads to a local interaction

1

(2π)6
1

(
√

3)3

∫

d~π1d~π2d~π′
1d~π′

2|~π1~π2〉gK1
(| ~Q|; Λ)gK2

(| ~Q′|; Λ)(YK1
(Q̂)YK2

(Q̂′))(K)〈~π′
1~π

′
2|

= iK1+K2

∫

d~ξ1d~ξ2|~ξ1
~ξ2〉fK1

(
√

2ξ1; Λ)fK2
(| 1√

2
~ξ1 +

√

3
2
~ξ2|; Λ)(YK1

(ξ̂1)YK2
(

̂
1√
2
~ξ1 +

√

3
2
~ξ2))

(K)〈~ξ1
~ξ2| . (18)

Using (1) and (2), we note that
√

2~ξ1 = ~r1−~r2 and 1√
2
~ξ1 +

√

3
2
~ξ2 = ~r1−~r3. In the above equation, we have introduced

a new function using the relation

iKfK(r; Λ)YKk(r̂) =
1

(2π)3

∫

d~q ei~q·~rgK(q; Λ)YKk(q̂) , (19)

which implies

fK(r; Λ) =
1

2π2

∫

dqq2jK(qr)gK(q; Λ) . (20)

We manipulate Eq. (18) first by utilizing the spherical harmonics relation

YK2k2
(~̂r1 + ~r2) =

K2
∑

K3=0

√
4π

K̂3

[(

2K2 + 1

2K3

)]

1
2

rK3

1 rK2−K3

2 |~r1 + ~r2|−K2(YK3
(r̂1)YK2−K3

(r̂2))
K2

k2
, (21)

and, second, by the following expansion involving the functions depending on | 1√
2
~ξ1 +

√

3
2
~ξ2|:

fK2
(|~r1 + ~r2|; Λ)|~r1 + ~r2|−K2 = 4π

∑

XMX

fK2,X(r1, r2; Λ)(−1)XY ∗
XMX

(r̂1)YXMX
(r̂2) , (22)

with the function fK2,X(r1, r2; Λ) given by

fK2,X(r1, r2; Λ) =
2

π

∫

dqq2jX(qr1)jX(qr2)

∫

drr2j0(qr)
fK2

(r; Λ)

rK2

, (23)

or, equivalently, by

fK2,X(r1, r2; Λ) = 1
2

∫ 1

−1
duPX(u)

fK2
(
√

r2

1
+r2

2
−2r1r2u;Λ)

(r2

1
+r2

2
−2r1r2u)K2

. (24)
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Using (21) and (22), the term (18) is re-written in the form

= iK1+K2

∫

d~ξ1d~ξ2|~ξ1
~ξ2〉fK1

(
√

2ξ1; Λ)

K2
∑

K3=0

∑

XY ZV

[(

2K2 + 1

2K3

)]

1
2

( 1√
2
ξ1)

K3(
√

3
2ξ2)

K2−K3fK2,X( 1√
2
ξ1,

√

3
2ξ2; Λ)

×X̂2 ̂K2 − K3K̂1K̂2Ŷ (−1)K1+Y +Z+K

{

K1 Y V
Z K K2

}{

Y X K3

K2 − K3 K2 Z

}

×(X0K30|Y 0)(X0K2 − K30|Z0)(Y 0K10|V 0)(YV (ξ̂1)YZ(ξ̂2))
(K)
k 〈~ξ1

~ξ2| , (25)

which is convenient for matrix element calculations.

E. One-pion-exchange plus contact N2LO NNN term

We are now in a position to discuss the one-pion exchange plus contact term that appears at the N2LO. Following
Ref. [9], we can write the W1 term contribution as

W 1π cont
1 = −D

1

(2π)6
gA

8F 2
π

~τ2 · ~τ3

[

1

~Q′2 + M2
π

~σ2 · ~Q′~σ3 · ~Q′ +
1

~Q2 + M2
π

~σ2 · ~Q~σ3 · ~Q

]

, (26)

with D = cD

F 2
πΛχ

, where cD is a LEC from the chiral Lagrangian of order one. A diagramatic depiction of the second

term in the parenthesis is presented in Fig. 3. The first term corresponds to the exchange of 2 ↔ 3. Using the

3              1        2

FIG. 3: One-pion exchage plus contact NNN interaction term of the N2LO χEFT.

regulator dependent on the sum of Jacobi momenta squared of Ref. [9], this term can be cast in the form

W 1π cont,ENGKMW
1 = −D

1

(2π)6
gA

8F 2
π

1

(
√

3)3

∫

d~π1d~π2d~π′
1d~π′

2|~π1~π2〉F (1
2 (π2

1 + π2
2); Λ)

×~τ2 · ~τ3

[

1

~Q′2 + M2
π

~σ2 · ~Q′~σ3 · ~Q′ +
1

~Q2 + M2
π

~σ2 · ~Q~σ3 · ~Q

]

F (1
2 (π′2

1 + π′2
2 ); Λ)〈~π′

1~π
′
2| . (27)

On the other hand, with a regulator dependent on momentum transfer, we get

W 1π cont,Q
1 = −D

1

(2π)6
gA

8F 2
π

1

(
√

3)3

∫

d~π1d~π2d~π′
1d~π′

2|~π1~π2〉F ( ~Q2; Λ)

×~τ2 · ~τ3

[

1

~Q′2 + M2
π

~σ2 · ~Q′~σ3 · ~Q′ +
1

~Q2 + M2
π

~σ2 · ~Q~σ3 · ~Q

]

F ( ~Q′2; Λ)〈~π′
1~π

′
2| , (28)

which leads to a term local in coordinate space. We depict the second term in the parenthesis of (28) schematically in
Fig. 4. The first term corresponds to the exchange of 2 ↔ 3. This choice of regulation results in spin-isopin-coordinate
structure that also appears in NNN terms obtained in Ref. [8]. We note that a somewhat different spin-isopin structure
was used for pion-range-short-range NNN terms in Refs. [30] and [32]. In Ref. [30] in particular, the ~σ and ~τ operators
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were associated with the active nucleon 1, i.e.

W
1π cont,Qσ1

1 = −D
1

(2π)6
gA

8F 2
π

1

(
√

3)3

∫

d~π1d~π2d~π′
1d~π′

2|~π1~π2〉F ( ~Q2; Λ)

×
[

~τ1 · ~τ3
1

~Q′2 + M2
π

~σ1 · ~Q′~σ3 · ~Q′ + ~τ1 · ~τ2
1

~Q2 + M2
π

~σ1 · ~Q~σ2 · ~Q

]

F ( ~Q′2; Λ)〈~π′
1~π

′
2| , (29)

This change does not alter the matrix element of (27) in the antisymmetrized three-nucleon basis. It will lead to a
difference in the matrix element of (28). However, the dependence on the regulator is a higher order effect than the
χEFT expansion order used to derive the NNN interaction. Therefore, these differences should have only minor effect.
In fact, we confirmed in nuclear structure calculations such as those described in Ref. [12] that impact of the choice
(27) or (28) is small in particular when the natural LECs values are used (|cD| ≈ 1). However, a more significant
impact of the choice of the regulator in particular on spin-orbit force sensitive observables is observed in the case of
the two-pion-exchange terms as discussed in the Introduction.

3             1        2

FIG. 4: One-pion exchage plus contact NNN interaction term of the N2LO χEFT regulated by a function depending on
momentum transfer.

Due to the antisymmetry of the three-nucleon wave functions in (8), it is sufficient to consider just one term of the
two in parenthesis in (27) and (28) and multiply the result by two. Using the first term, the matrix element of (27)
with the regulator dependent on the sum of Jacobi momenta squared is obtained in the form

〈(nlsjt,NLJ )JT |W 1π cont,ENGKMW
1 |(n′l′s′j′t′,N ′L′J ′)JT 〉

= −D
gA

F 2
π

1

2
√

3π4
δl0δl′0δsjδs′j′ t̂t̂

′
{

t t′ 1
1
2

1
2

1
2

}{

t t′ 1
1
2

1
2 T

}

(−1)(n+N+n′+N ′)+(L+L′)/2

×ĵĵ′Ĵ Ĵ ′(−1)J−J+T+
1
2

{

j j′ 1
1
2

1
2

1
2

} {

j j′ 1
J ′ J J

}

∑

K=0,2

K̂(1010|K0)







J L 1
2

J ′ L′ 1
2

1 K 1







×
K

∑

K1=0

K̂ − K1

[(

2K + 1

2K1

)]

1
2

(−1)L+K1

∑

X

X̂L̂′(K10X0|L0)(L′0K − K10|X0)

{

L′ K − K1 X
K1 L K

}

×
∫

dπ1dπ2dπ′
1dπ′

2π
2
1π

2
2π′2

1 π′2
2 Rn0(π1,

1
b )RNL(π2,

1
b )F (1

2 (π2
1 + π2

2); Λ)

×Rn′0(π
′
1,

1
b )RN ′L′(π′

2,
1
b )F (1

2 (π′2
1 + π′2

2 ); Λ)πK1

2 π′K−K1

2 gK,X(π2, π
′
2) , (30)

where we introduced the function

gK,X(p, p′) =
2

π

∫

dqq2drr2 q2−K

2
3q2 + M2

π

j0(qr)jX(pr)jX (p′r) , (31)

which can be alternatively evaluated through

gK,X(p, p′) = 1
2

∫ 1

−1
duPX(u)

√
p2+p′2−2pp′u

2−K

2
3 (p2 + p′2 − 2pp′u)2 + M2

π

. (32)

The matrix element (30) was first derived in Ref. [9].
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For the one-pion exchange plus contact term (28) with the regulator dependent on momentum transfer, we present
the matrix element obtained using both terms in the parenthesis of (28). Due to the three-nucleon wave function
antisymmetry, both contributions lead to the same result for (8). One can take the advantage of this feature and use
the alternative calculations to check the correctness of the numerical code. First, we take the first part of (28) and
get

〈(nlsjt,NLJ )JT |W 1π cont,Q
1 |(n′l′s′j′t′,N ′L′J ′)JT 〉

= −D
9gA

F 2
π

t̂t̂′(−1)t+t′+T+
1
2

{

t t′ 1
1
2

1
2

1
2

}{

t t′ 1
1
2

1
2 T

}

ĵĵ′Ĵ Ĵ ′(−1)J−J+s+j′
{

s s′ 1
1
2

1
2

1
2

}

×
∑

K=0,2

K̂(−1)(K/2)(1010|K0)
∑

K2,K3

K̂2K̂3l̂
′L̂′(l′0K20|l0)(L′0K30|L0)

×
∑

Z

Ẑ2







l s j
l′ s′ j′

K2 1 Z













L 1
2 J

L′ 1
2 J ′

K3 1 Z







{

j j′ Z
J ′ J J

}{

K2 1 Z
1 K3 K

}

×
K

∑

K1=0

K̂ − K1

[(

2K + 1

2K1

)]

1
2

(−1)K1

∑

X

(−1)XX̂2(K10X0|K20)(K − K10X0|K30)

{

K1 X K2

K3 K K − K1

}

×
∫

dξ1dξ2ξ
2
1ξ2

2Rnl(ξ1, b)RNL(ξ2, b)Rn′l′(ξ1, b)RN ′L′(ξ2, b)

×(
√

1
2ξ1)

K1(
√

3
2ξ2)

K−K1Z0(
√

2ξ1; Λ)fK,X(
√

1
2ξ1,

√

3
2ξ2; Λ) , (33)

with the functions

f0,X(r1, r2; Λ) =
1

2π2

∫

dqq2jX(qr1)jX(qr2)
q2F (q2; Λ)

q2 + M2
π

, (34)

and

f2,X(r1, r2; Λ) =
1

4π2

∫ ∞

0

dqq2jX(qr1)jX(qr2)

∫ ∞

q

dkk(k2 − q2)
F (k2; Λ)

k2 + M2
π

, (35)

which are special cases of (23). An alternative way of evaluating (35) is

f2,X(r1, r2; Λ) = 1
2

∫ 1

−1
duPX(u)

f2(
√

r2

1
+r2

2
−2r1r2u;Λ)

r2

1
+r2

2
−2r1r2u

, (36)

with

f2(r; Λ) =
1

2π2

∫

dqq2j2(qr)
q2F (q2; Λ)

q2 + M2
π

. (37)

We note that (36) is numerically more efficient than (35).
Next, we take the second part of (28), which results in a simpler expression for one-pion-exchange plus contact

N2LO three-nucleon matrix element in non-antisymmetrized basis:

〈(nlsjt,NLJ )JT |W 1π cont,Q
1 |(n′l′s′j′t′,N ′L′J ′)JT 〉

= −D
9gA

F 2
π

t̂t̂′(−1)t+t′+T+
1
2

{

t t′ 1
1
2

1
2

1
2

}{

t t′ 1
1
2

1
2 T

}

ĵĵ′Ĵ Ĵ ′ŝŝ′(−1)J−J+s+j′
{

s s′ 1
1
2

1
2

1
2

}

l̂′L̂′

×
∑

K=0,2

K̂(−1)(K/2)(1010|K0)
∑

V

(−1)V V̂ (V 0l′0|l0)
∑

X

X̂2(X0K0|V 0)(X0L′0|L0)

×
∑

Z

Ẑ2







l s j
l′ s′ j′

V 1 Z













L 1
2 J

L′ 1
2 J ′

X 1 Z







{

j j′ Z
J ′ J J

}{

V 1 Z
1 X K

}

×
∫

dξ1dξ2ξ
2
1ξ2

2Rnl(ξ1, b)RNL(ξ2, b)Rn′l′(ξ1, b)RN ′L′(ξ2, b)fK(
√

2ξ1; Λ)Z0,X(
√

1
2ξ1,

√

3
2ξ2; Λ) , (38)



9

with

fK(r; Λ) =
1

2π2

∫

dqq2jK(qr)
q2F (q2; Λ)

q2 + M2
π

, (39)

which is a special case of (20) and Z0,X(r1, r2; Λ) given by Eq. (16). Both (33) and (38) are already multiplied by two
in anticipation of the three-nucleon antisymmetry in the final matrix element (8).

For completeness, we also present the matrix element of the second part of (29):

〈(nlsjt,NLJ )JT |W 1π cont,Qσ1

1 |(n′l′s′j′t′,N ′L′J ′)JT 〉

= −D
9gA

F 2
π

δtt′(−1)t−1

{

1
2

1
2 t

1
2

1
2 1

}

ĵĵ′Ĵ Ĵ ′ŝŝ′ l̂′L̂′(−1)s+s′+j′+J+L+J+J ′+
1
2

×
∑

K=0,2

K̂(−1)(K/2)(1010|K0)







s s′ K
1
2

1
2 1

1
2

1
2 1







∑

V

V̂ (V 0l′0|l0)
∑

X

X̂2(X0K0|V 0)(X0L′0|L0)

×







l s j
l′ s′ j′

V K X







{

J X J ′

j′ J j

}{

J X J ′

L′ 1
2 L

}

×
∫

dξ1dξ2ξ
2
1ξ2

2Rnl(ξ1, b)RNL(ξ2, b)Rn′l′(ξ1, b)RN ′L′(ξ2, b)fK(
√

2ξ1; Λ)Z0,X(
√

1
2ξ1,

√

3
2ξ2; Λ) , (40)

which is still simpler than (38). Again, this matrix element is already multiplied by two in anticipation of the three-
nucleon antisymmetry in the final matrix element (8). The matrix element of the (two-times the) first part of (29) is

given by (33) multiplied by (−1)t+t′+s+s′

. Due to the three-nucleon wave function antisymmetry, this contribution
leads to the same result for (8) as does (38), which can be taken advantage of in testing the correctness of numerical
calculations.

By comparing (27) with (33) (or equivalently with (38) and also with (40)) we note the different tensorial structure
of the matrix elements. When the regulator dependent on the sum of Jacobi momenta squared is used, only the l = 0,
l′ = 0 partial waves contribute. This is not the case, when the regulator depending on momentum transfer is utilized.
At the same time, however, we note that in the limit Λ → ∞ both expressions (27) and (33) as well as (38) and (40)
lead to the same result.

F. Two-pion exchange N2LO NNN terms

In this subsection, we present matrix elements of two-pion exchange N2LO NNN terms. Their schematic depiction is
shown in Fig. 5. There are three distinct terms associated with three LECs, c1, c3 and c4, from the chiral Lagrangian,

3               1               2 

FIG. 5: Two-pion exchange NNN interaction term of the N2LO χEFT.

which also appear in the subleading two-pion exchange in the NN potential. Consequently, values of these LECs
expected to be of order one are typically fixed at the NN level unlike the case of the previously introduced cD (26)
and cE (9) LECs whose values needs to be fixed in systems of more than two nucleons. In the present paper, we
derive only the matrix elements of the two-pion exchange NNN interaction terms regulated by a function depending
on momentum transfer, i.e. terms that are local in coordinate space.
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Following Ref. [9], the W1 part of the c1 term with the momentum transfer regulators can be written as

W 2π c1
1 = −c1

1

(2π)6
4M2

π

F 2
π

g2
A

4F 2
π

~τ2 · ~τ3F ( ~Q2; Λ)
1

~Q2 + M2
π

~σ2 · ~Q~σ3 · ~Q′ 1

~Q′2 + M2
π

F ( ~Q′2; Λ) . (41)

Using results of Subsect. II D, we find for the c1-term matrix element:

〈(nlsjt,NLJ )JT |W 2π c1,Q
1 |(n′l′s′j′t′,N ′L′J ′)JT 〉

= −c1
36M2

π

F 2
π

g2
A

F 2
π

t̂t̂′(−1)t+t′+T+
1
2

{

t t′ 1
1
2

1
2

1
2

}{

t t′ 1
1
2

1
2 T

}

ĵĵ′Ĵ Ĵ ′ŝŝ′(−1)J−J+s+j′
{

s s′ 1
1
2

1
2

1
2

}

l̂′L̂′

×
∑

V R

V̂ R̂(V 0l′0|l0)(R0L′0|L0)
∑

Y

(−1)Y Ŷ (Y 010|V 0)







l s j
l′ s′ j′

V 1 Y













L 1
2 J

L′ 1
2 J ′

R 1 Y







{

j j′ Y
J ′ J J

}

×
1

∑

K3=0

[(

3

2K3

)]

1
2

1̂ − K3

∑

X

X̂2(X0K30|Y 0)(X01 − K30|R0)

{

Y X K3

1 − K3 1 R

}

×
∫

dξ1dξ2ξ
2
1ξ2

2Rnl(ξ1, b)RNL(ξ2, b)Rn′l′(ξ1, b)RN ′L′(ξ2, b)

×(
√

1
2ξ1)

K3(
√

3
2ξ2)

1−K3f1(
√

2ξ1; Λ)f1,X(
√

1
2ξ1,

√

3
2ξ2; Λ) . (42)

Here we introduced the functions

f1(r; Λ) =
1

2π2

∫

dqq2j1(q)
qF (q2; Λ)

q2 + M2
π

, (43)

and

f1,X(r1, r2; Λ) =
1

2π2

∫ ∞

0

dqq2jX(qr1)jX(qr2)

∫ ∞

q

dk
kF (k2; Λ)

k2 + M2
π

, (44)

which are the explicit versions of functions given in Eqs. (20) and (23), respectively. The function (44) can be
alternatively evaluated with the help of the Legendre polynomial:

f1,X(r1, r2; Λ) = 1
2

∫ 1

−1 duPX(u)
f1(

√
r2

1
+r2

2
−2r1r2u;Λ)√

r2

1
+r2

2
−2r1r2u

. (45)

The W1 part of the two-pion exchange c3 term is given by [9]

W 2π c3
1 = c3

1

(2π)6
2

F 2
π

g2
A

4F 2
π

~τ2 · ~τ3F ( ~Q2; Λ)
1

~Q2 + M2
π

~σ2 · ~Q~σ3 · ~Q′ ~Q · ~Q′ 1

~Q′2 + M2
π

F ( ~Q′2; Λ) . (46)

For its matrix element we find

〈(nlsjt,NLJ )JT |W 2π c3,Q
1 |(n′l′s′j′t′,N ′L′J ′)JT 〉

= c3
18

F 2
π

g2
A

F 2
π

t̂t̂′(−1)t+t′+T+
1
2

{

t t′ 1
1
2

1
2

1
2

}{

t t′ 1
1
2

1
2 T

}

ĵĵ′Ĵ Ĵ ′ŝŝ′(−1)J−J+s+j′
{

s s′ 1
1
2

1
2

1
2

}

l̂′L̂′

×
∑

K1K2

(−1)(K1+K2)/2K̂1K̂2(1010|K10)(1010|K20)

×
∑

V R

(−1)V +RV̂ R̂(V 0l′0|l0)(R0L′0|L0)
∑

Y

Ŷ (Y 0K10|V 0)

×
∑

Z

Ẑ2(−1)Z







l s j
l′ s′ j′

V 1 Z













L 1
2 J

L′ 1
2 J ′

R 1 Z







{

j j′ Z
J ′ J J

} {

Z 1 Y
K1 V 1

}{

Z 1 Y
K2 R 1

}

×
K2
∑

K3=0

[(

2K2 + 1

2K3

)]

1
2

̂K2 − K3

∑

X

X̂2(X0K30|Y 0)(X0K2 − K30|R0)

{

Y X K3

K2 − K3 K2 R

}

×
∫

dξ1dξ2ξ
2
1ξ2

2Rnl(ξ1, b)RNL(ξ2, b)Rn′l′(ξ1, b)RN ′L′(ξ2, b)

×(
√

1
2ξ1)

K3(
√

3
2ξ2)

K2−K3fK1
(
√

2ξ1; Λ)fK2,X(
√

1
2ξ1,

√

3
2ξ2; Λ) , (47)
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with the function fK1
(r; Λ) given by (39), the function f0,X(r1, r2; Λ) given by (34) and the function f2,X(r1, r2; Λ)

given by (35).
Finally, the W1 part of two-pion exchange c4 term is given by [9]

W 2π c4
1 = c4

1

(2π)6
1

F 2
π

g2
A

4F 2
π

~τ1 · (~τ2 × ~τ3)F ( ~Q2; Λ)
1

~Q2 + M2
π

~σ2 · ~Q~σ3 · ~Q′~σ1 · ( ~Q × ~Q′)
1

~Q′2 + M2
π

F ( ~Q′2; Λ) , (48)

and for its matrix element we find

〈(nlsjt,NLJ )JT |W 2π c4,Q
1 |(n′l′s′j′t′,N ′L′J ′)JT 〉

= −c4
362

F 2
π

g2
A

4F 2
π

t̂t̂′(−1)T+t′+
1
2

{

t t′ 1
1
2

1
2 T

}







1
2

1
2 t′

1
2

1
2 t

1 1 1







ĵĵ′Ĵ Ĵ ′ŝŝ′(−1)J+J+j′ l̂′L̂′

×
∑

K1K2

(−1)(K1+K2)/2K̂1K̂2(1010|K10)(1010|K20)

×
∑

V R

(−1)V +RV̂ R̂(V 0l′0|l0)(R0L′0|L0)
∑

Y

Ŷ (Y 0K10|V 0)

×
∑

Z

Ẑ2(−1)Z







L 1
2 J

L′ 1
2 J ′

R 1 Z







{

j j′ Z
J ′ J J

}{

Z 1 Y
K2 R 1

}

×
∑

K4

K̂2
4







l s j
l′ s′ j′

V K4 Z













1
2

1
2 s

1
2

1
2 s′

1 1 K4







{

Z 1 Y
K1 V K4

}{

1 1 1
1 K4 K1

}

×
K2
∑

K3=0

[(

2K2 + 1

2K3

)]

1
2

̂K2 − K3

∑

X

X̂2(X0K30|Y 0)(X0K2 − K30|R0)

{

Y X K3

K2 − K3 K2 R

}

×
∫

dξ1dξ2ξ
2
1ξ2

2Rnl(ξ1, b)RNL(ξ2, b)Rn′l′(ξ1, b)RN ′L′(ξ2, b)

×(
√

1
2ξ1)

K3(
√

3
2ξ2)

K2−K3fK1
(
√

2ξ1; Λ)fK2,X(
√

1
2ξ1,

√

3
2ξ2; Λ) . (49)

The same functions (34), (35) and (39) that were introduced in the c3 term enter the c4 term as well.
We note that the local two-pion-exchange terms appear also in the Tucson-Melbourne NNN interaction [18]. The

analogous terms to c1, c3 and c4 are present in particular in the TM′ interaction [19, 20]. The TM′ parameters are
denoted by a′, b and d with the relation to the above c1, c3 and c4 given by

a′ =
4M2

π

F 2
π

c1 , (50)

b =
2

F 2
π

c3 , (51)

d =
−1

F 2
π

c4 . (52)

Further, the regulator function F (q2; Λ) is chosen in the form

FTM (q2; Λ) =
Λ2 − M2

π

Λ2 + q2
. (53)

This choice allows to evaluate integrals that define the functions fK analytically. The analytic expressions can be
found, e.g. in Ref. [27]. In that paper, the following function is introduced:

Z1(r; Λ) =
1

2π2

∫

dqq2j0(qr)
F (q2; Λ)

q2 + M2
π

. (54)

Using the properties of spherical Bessel functions, we can easily find relations between derivatives of Z1 and our fK
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functions:

f0(r, Λ) = −
(

Z ′′
1 (r; Λ) +

2

r
Z ′

1(r; Λ)

)

, (55)

f1(r, Λ) = −Z ′
1(r; Λ) (56)

f2(r, Λ) = Z ′′
1 (r; Λ) − 1

r
Z ′

1(r; Λ) . (57)

For completeness, we note that a still different notation was used in Ref. [8], where functions Ik,l(r; Λ) were introduced.
They are related to the Z0(r, Λ) that we introduced in Eq. (13) and to the above Z1 function (54) is as follows:

Z0(r, Λ) = I0,0(r; Λ) , (58)

Z1(r, Λ) = I2,0(r, Λ) . (59)

In Ref. [34], the Tucson-Melbourne NNN interaction matrix elements in the HO basis were calculated using a differ-
ent algorithm than the one used in this paper. That algorithm relied on a completeness relation and transformations
of HO states with the help of HO brackets. Even though the algorithm of Ref. [34] required calculation of one-
dimensional radial integrals, while the the present algorithm requires evaluation of two-dimensional radial integrals,
the present algorithm is substantially more efficient.

III. CONVERGENCE TEST FOR 3H AND 4HE

In this section, we apply the matrix elements of the N2LO χEFT NNN interaction obtained in this paper to the
NCSM calculation of 3H ad 4He ground state properties. As a test of correctness of the computer code, we verified
that the new more efficient algorithm reproduces the results obtained using the algorithm of Ref. [34] for the two-
pion-exchange term matrix elements. For the contact terms, we verified that in the limit of Λ → ∞, the matrix
elements (15) and (14) lead to the same result and the same is true for matrix elements (38) and (30). In addition,
we benchmarked the computer code for evaluation of (14) and (30) with the computer code written by A. Nogga [35].
Finally, we tested numerically that the use of (33) results in the same matrix element as the use of (38) in the three-
nucleon antisymmetrized basis |NiJT 〉 introduced in Eq. (8). The same checks were also performed for the alternative
version of the one-pion-exchange plus contact term (D-term) given in Eq. (29). That is, we verified numerically that
the matrix element (40) leads to the same result as (30) in the limit of Λ → ∞ and the use of (40) results in the same

matrix element in the three-nucleon antisymmetrized basis |NiJT 〉 as the use of (33) multiplied by (−1)t+t′+s+s′

.
We use the N3LO NN interaction of Ref. [11]. We adopt the c1, c3 and c4 LECs values as well as the value of Λ

from the N3LO NN interaction of Ref. [11] for our local chiral EFT N2LO NNN interaction. The regulator function
was chosen in a form consistent with that used in Refs. [9] and [11]: F (q2; Λ) = exp(−q4/Λ4) (11). Values of the cD

and cE LECs are constrained by a fit to the A = 3 system binding energy [12, 16]. Obviously, additional constraints
are needed to uniquely determine values of cD and cE , see Refs. [9, 12, 16, 36] for discussions of different possibilities.
Here we are interested only in convergence properties of our calculations. Therefore, we simply select a reasonable
value, e.g. cD = 1, and follow Ref. [12] and adopt cE value as an average of fits to 3H and 3He binding energies. In
Table I, we summarize the NNN interaction parameters used in calculations described in this section. We note that
4He results obtained with the identical Hamiltonian but with cD = −1 and cE = −0.331 are presented in Ref. [15].

TABLE I: NNN interaction parameters used in the present calculations. The regulator function was chosen in the form
F (q2; Λ) = exp(−q4/Λ4).

c1 [GeV−1] c3 [GeV−1] c4 [GeV−1] cD cE Λ [MeV] Λχ [MeV] Mπ[MeV ] gA Fπ[MeV ]
-0.81 -3.2 5.4 1.0 -0.029 500 700 138 1.29 92.4

We use the Jacobi coordinate HO basis antisymmentrized according to the method described in Ref. [33]. In Figs. 6
and 7, we show the convergence of the 3H ground-state energy and point-proton rms radius, respectively, with the
size of the basis. Thin lines correspond to results obtained with the NN interaction only. Thick lines correspond to
calculations that also include the NNN interaction. The full lines correspond to calculations with two-body effective
interaction derived from the chiral EFT N3LO NN interaction. The dashed lines correspond to calculations with the
bare chiral EFT N3LO NN interaction. The bare NNN interaction is added to either the bare NN or to the effective
NN interaction in calculations depicted by thick lines. We observe that the convergence is faster when the two-body
effective interaction is used. However, starting at about Nmax = 24 the convergence is reached also in calculations
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with the bare NN interaction. The rate of convergence also depends on the choice of the HO frequency. In general, it
is always advantageous to use the effective interaction in order to improve the convergence rate. The 3H ground-state
energy and point-proton radius results are summarized in Table II. The contributions of different NNN terms to the
3H ground-state energy are presented in Table III. In addition to results obtained using the cD = 1, we also show
in Table III results obtained using cD = −1 and a corresponding cE constrained by the avarage of the 3H and 3He
binding energy fit. For completeness, we show results obtained by the two alternative one-pion-exchange plus contact
terms (28) and (29). In all cases, the contact E-term gives a positive contribution. The contribution from the D-term
changes sign depending on the choice of cD. Still, the two-pion exchange c-terms dominate the NNN expectation
value.
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FIG. 6: (Color online) 3H ground-state energy dependence on the size of the basis. The HO frequency of ~Ω = 28 MeV was
employed. Results with (thick lines) and without (thin lines) the NNN interaction are shown. The full lines correspond to
calculations with two-body effective interaction derived from the chiral NN interaction, the dashed lines to calculations with
the bare chiral NN interaction. For further details see the text.

In Figs. 8 and 9, we show convergence of the 4He ground-state energy and point-proton rms radius, respectively.
The NCSM calculations are perforemed in basis spaces up to Nmax = 20. Thin lines correspond to results obtained
with the NN interaction only, while thick lines correspond to calculations that also include the NNN interaction. The
dashed lines correspond to results obtained with bare interactions. The full lines correspond to results obtained using
three-body effective interaction (the NCSM three-body cluster approximation). It is apparent that the use of the
three-body effective interaction improves the convergence rate dramatically. We can see that at about Nmax = 18 the
bare interaction calculation reaches convergence as well. It should be noted, however, that p-shell calculations with
the NNN interactions are presently feasible in model spaces up to Nmax = 6 or Nmax = 8. The use of the three-body
effective interaction is then essential in the p-shell calculations.

We note that NCSM calculations in the three-body cluster approximation are rather involved. The 4He NCSM
calculation with the three-body effective interaction proceeds in three steps. First, we diagonalize the Hamiltonian
with and without the NNN interaction in a three-nucleon basis for all relevant three-body channels. In the second
step, we use the three-body solutions from the first step to derive three-body effective interactions with and without
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FIG. 7: (Color online) 3H point-proton rms radius dependence on the size of the basis. The HO frequency of ~Ω = 28 MeV was
employed. Results with (thick line) and without (thin line) the NNN interaction are shown. The two-body effective interaction
derived from the chiral NN interaction was used in the calculation. For further details see the text.

TABLE II: Ground-state energy and point-proton rms radius of 3H and 4He calculated using the chiral N3LO NN potential
[11] with and without the local chiral N2LO NNN interaction. The LECs values and other parameters are given in Table I.
The calculations were performed within the ab initio NCSM.

3H
NN NN+NNN Expt.

Egs [MeV] -7.852(5) -8.473(5) -8.482
rp [fm] 1.650(5) 1.608(5)

4He
NN NN+NNN Expt.

Egs [MeV] -25.39(1) -28.34(2) -28.296
rp [fm] 1.515(2) 1.475(2) 1.455(7)

TABLE III: Contributions of different NNN terms to the 3H ground-state energy. The cD and cE LECs are explicitly shown.
Other parameters are given in Table I. All energies are given in MeV. The two alternative one-pion-exchange plus contact
terms (28) and (29) are considered.

3H
cD cE Egs c terms D term E term

1.0 (Eq. (28)) -0.029 -8.473 -1.01 0.13 0.03
-1.0 (Eq. (28)) -0.331 -8.474 -1.07 -0.16 0.32
1.0 (Eq. (29)) -0.159 -8.471 -0.99 0.005 0.14
-1.0 (Eq. (29)) -0.213 -8.474 -1.10 -0.05 0.21
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FIG. 8: (Color online) 4He ground-state energy dependence on the size of the basis. The HO frequencies of ~Ω = 28 and
36 MeV was employed. Results with (thick lines) and without (thin lines) the NNN interaction are shown. The full lines
correspond to calculations with three-body effective interaction, the dashed lines to calculations with the bare interaction. For
further details see the text.

the NNN interaction. By subtracting the two effective interactions we isolate the NN and NNN contributions. This is
needed due to a different scaling with particle number of the two- and the three-body interactions. The 4He efffective
interaction is then obtained by adding the two contributions with the appropriate scaling factors [14]. In the third
step, we diagonalize the resulting Hamiltonian in the antisymmetrized four-nucleon Jacobi-coordinate HO basis to
obtain the 4He JπT = 0+0 ground state. Obviously, in calculations without the NNN interaction, the above three
steps are simplified as no NNN contribution needs to be isolated. In addition, in the case of no NNN interaction,
we may use just the two-body effective interaction (two-body cluster approximation), which is much simpler. The
convergence is slower, however, see discussion in Ref. [37]. We also note that 4He properties with the chiral N3LO
NN interaction that we employ here were calculated using two-body cluster approximation in Ref. [38] and present
results are in agreement with results found there.

Our 4He results are summarized in Table II. We note that the present NCSM 3H and 4He results obtained with
the chiral N3LO NN interaction are in a perfect agreement with results obtained using the variational calculations
in the hyperspherical harmonics basis as well as with the Faddeev-Yakubovsky calculations published in Ref. [39].
A satisfying feature of the present NCSM calculation is the fact that the rate of convergence is not affected in any
significant way by inclusion of the NNN interaction.

IV. CONCLUSIONS

In this paper, we regulated the NNN interaction derived within the chiral effective field theory at the N2LO with
a function depending on the magnitude of the momentum transfer. The regulated NNN interaction is local in the
coordinate space. This is advantages for some many-body techniques. In addition, it was found that this interaction
performs sligthtly better in mid-p-shell nuclei than its nonlocal counterpart [12, 35]. We calculated matrix elements
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FIG. 9: (Color online) 4He point-proton rms radius dependence on the size of the basis. The HO frequencies of ~Ω = 28 and 36
MeV was employed. Results with (thick line) and without (thin line) the NNN interaction are shown. The three-body effective
interaction was used in the calculation. For further details see the text.

of the local chiral NNN interaction in the three-nucleon HO basis and performed calculations for 3H and 4He within
the ab initio NCSM. We demonstrated that a very good convergence of the ground-state properties of these nuclei
remains unchanged when the NNN interaction is added to the Hamiltonian. Expressions for the local χEFT NNN
interaction matrix elements derived in this paper may by used after some modifications with other bases, e.g. with
the hyperspherical harmonics basis.
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[16] A. Nogga, P. Navrátil, B. R. Barrett and J. P. Vary Phys. Rev. C 73, 064002 (2006).
[17] B. S. Pudliner, V. R. Pandharipande, J. Carlson, and R. B. Wiringa, Phys. Rev. Lett. 74, 4396 (1995).
[18] S. A. Coon, M. D. Scadron, P. C. McNamee, B. R. Barrett, D. W. E. Blatt and B. H. J. McKellar, Nucl. Phys. A 317,

242 (1979).
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