150 research outputs found

    The lack of the Celf2a splicing factor converts a Duchenne genotype into a Becker phenotype

    Get PDF
    Substitutions, deletions and duplications in the dystrophin gene lead to either the severe Duchenne muscular dystrophy (DMD) or mild Becker muscular dystrophy depending on whether out-of-frame or in-frame transcripts are produced. We identified a DMD case (GSΔ44) where the correlation between genotype and phenotype is not respected, even if carrying a typical Duchenne mutation (exon 44 deletion) a Becker-like phenotype was observed. Here we report that in this patient, partial restoration of an in-frame transcript occurs by natural skipping of exon 45 and that this is due to the lack of Celf2a, a splicing factor that interacts with exon 45 in the dystrophin pre-mRNA. Several experiments are presented that demonstrate the central role of Celf2a in controlling exon 45 splicing; our data point to this factor as a potential target for the improvement of those DMD therapeutic treatments, which requires exon 45 skipping

    Genetic modifiers of Duchenne muscular dystrophy and dilated cardiomyopathy

    Get PDF
    OBJECTIVE: Dilated cardiomyopathy (DCM) is a major complication and leading cause of death in Duchenne muscular dystrophy (DMD). DCM onset is variable, suggesting modifier effects of genetic or environmental factors. We aimed to determine if polymorphisms previously associated with age at loss of independent ambulation (LoA) in DMD (rs28357094 in the SPP1 promoter, rs10880 and the VTTT/IAAM haplotype in LTBP4) also modify DCM onset. METHODS: A multicentric cohort of 178 DMD patients was genotyped by TaqMan assays. We performed a time-to-event analysis of DCM onset, with age as time variable, and finding of left ventricular ejection fraction 70 mL/m2 as event (confirmed by a previous normal exam < 12 months prior); DCM-free patients were censored at the age of last echocardiographic follow-up. RESULTS: Patients were followed up to an average age of 15.9 \ub1 6.7 years. Seventy-one/178 patients developed DCM, and median age at onset was 20.0 years. Glucocorticoid corticosteroid treatment (n = 88 untreated; n = 75 treated; n = 15 unknown) did not have a significant independent effect on DCM onset. Cardiological medications were not administered before DCM onset in this population. We observed trends towards a protective effect of the dominant G allele at SPP1 rs28357094 and recessive T allele at LTBP4 rs10880, which was statistically significant in steroid-treated patients for LTBP4 rs10880 (< 50% T/T patients developing DCM during follow-up [n = 13]; median DCM onset 17.6 years for C/C-C/T, log-rank p = 0.027). CONCLUSIONS: We report a putative protective effect of DMD genetic modifiers on the development of cardiac complications, that might aid in risk stratification if confirmed in independent cohorts

    Screening for Aphasia in NeuroDegeneration for the Diagnosis of Patients with Primary Progressive Aphasia: Clinical Validity and Psychometric Properties.

    Get PDF
    BACKGROUND: We evaluated the psychometric proprieties of the Screening for Aphasia in NeuroDegeneration (SAND) battery in Italian primary progressive aphasia (PPA) and movement disorder (MD) patients. METHODS: The sample included 30 consecutive PPA and 45 MD patients who completed the SAND battery together with a clinical interview and a neurological/neuropsychological examination and 130 healthy controls (HC). RESULTS: The SAND battery showed good internal consistency and good convergent and divergent validity. receiver operating characteristic analysis revealed an area under the curve of 0.978 for PPA versus HC and of 0.786 for PPA versus MD. A cutoff ≥3 gave a sensitivity of 0.933% and a specificity of 0.946% for discriminating PPA versus HC, whereas a cutoff ≥5 gave a sensitivity of 0.767% and a specificity of 0.667% for discriminating PPA versus MD. CONCLUSION: These results indicate that the SAND battery is an adequate, reliable, and valid diagnostic tool for PPA

    Assessment of the olfactory function in Italian patients with type 3 von Willebrand disease caused by a homozygous 253 Kb deletion involving VWF and TMEM16B/ANO2.

    Get PDF
    Type 3 Von Willebrand disease is an autosomal recessive disease caused by the virtual absence of the von Willebrand factor (VWF). A rare 253 kb gene deletion on chromosome 12, identified only in Italian and German families, involves both the VWF gene and the N-terminus of the neighbouring TMEM16B/ANO2 gene, a member of the family named transmembrane 16 (TMEM16) or anoctamin (ANO). TMEM16B is a calcium-activated chloride channel expressed in the olfactory epithelium. As a patient homozygous for the 253 kb deletion has been reported to have an olfactory impairment possibly related to the partial deletion of TMEM16B, we assessed the olfactory function in other patients using the University of Pennsylvania Smell Identification Test (UPSIT). The average UPSIT score of 4 homozygous patients was significantly lower than that of 5 healthy subjects with similar sex, age and education. However, 4 other members of the same family, 3 heterozygous for the deletion and 1 wild type, had a slightly reduced olfactory function indicating that socio-cultural or other factors were likely to be responsible for the observed difference. These results show that the ability to identify odorants of the homozygous patients for the deletion was not significantly different from that of the other members of the family, showing that the 253 kb deletion does not affect the olfactory performance. As other genes may compensate for the lack of TMEM16B, we identified some predicted functional partners from in silico studies of the protein-protein network of TMEM16B. Calculation of diversity for the corresponding genes for individuals of the 1000 Genomes Project showed that TMEM16B has the highest level of diversity among all genes of the network, indicating that TMEM16B may not be under purifying selection and suggesting that other genes in the network could compensate for its function for olfactory ability

    Adult-onset KMT2B-related dystonia

    Get PDF
    KMT2B-related dystonia (DYT-KMT2B, also known as DYT28) is an autosomal dominant neurological disorder characterized by varying combinations of generalized dystonia, psychomotor developmental delay, mild-to-moderate intellectual disability and short stature. Disease onset occurs typically before 10 years of age. We report the clinical and genetic findings of a series of subjects affected by adult-onset dystonia, hearing loss or intellectual disability carrying rare heterozygous KMT2B variants. Twelve cases from five unrelated families carrying four rare KMT2B missense variants predicted to impact protein function are described. Seven affected subjects presented with adult-onset focal or segmental dystonia, three developed isolated progressive hearing loss, and one displayed intellectual disability and short stature. Genome-wide DNA methylation profiling allowed to discriminate these adult-onset dystonia cases from controls and early-onset DYT-KMT2B patients. These findings document the relevance of KMT2B variants as a potential genetic determinant of adult-onset dystonia and prompt to further characterize KMT2B carriers investigating non-dystonic features

    Telethon Network of Genetic Biobanks: a key service for diagnosis and research on rare diseases

    Get PDF
    Several examples have always illustrated how access to large numbers of biospecimens and associated data plays a pivotal role in the identification of disease genes and the development of pharmaceuticals. Hence, allowing researchers to access to significant numbers of quality samples and data, genetic biobanks are a powerful tool in basic, translational and clinical research into rare diseases. Recently demand for well-annotated and properly-preserved specimens is growing at a high rate, and is expected to grow for years to come. The best effective solution to this issue is to enhance the potentialities of well-managed biobanks by building a network.Here we report a 5-year experience of the Telethon Network of Genetic Biobanks (TNGB), a non-profit association of Italian repositories created in 2008 to form a virtually unique catalogue of biospecimens and associated data, which presently lists more than 750 rare genetic defects. The process of TNGB harmonisation has been mainly achieved through the adoption of a unique, centrally coordinated, IT infrastructure, which has enabled (i) standardisation of all the TNGB procedures and activities; (ii) creation of an updated TNGB online catalogue, based on minimal data set and controlled terminologies; (iii) sample access policy managed via a shared request control panel at web portal. TNGB has been engaged in disseminating information on its services into both scientific/biomedical - national and international - contexts, as well as associations of patients and families. Indeed, during the last 5-years national and international scientists extensively used the TNGB with different purposes resulting in more than 250 scientific publications. In addition, since its inception the TNGB is an associated member of the Biobanking and Biomolecular Resources Research Infrastructure and recently joined the EuroBioBank network. Moreover, the involvement of patients and families, leading to the formalization of various agreements between TNGB and Patients' Associations, has demonstrated how promoting Biobank services can be instrumental in gaining a critical mass of samples essential for research, as well as, raising awareness, trust and interest of the general public in Biobanks. This article focuses on some fundamental aspects of networking and demonstrates how the translational research benefits from a sustained infrastructure
    • …
    corecore