10,927 research outputs found

    Scalar-tensor theories, trace anomalies and the QCD-frame

    Full text link
    We consider the quantum effects of matter fields in scalar-tensor theories and clarify the role of trace anomaly when switching between conformally related `frames'. We exploit the property that the couplings between the scalar and the gauge fields are not frame-invariant in order to define a `QCD-frame', where the scalar is not coupled to the gluons. We show that this frame is a natural generalization of the `Jordan frame' in the case of non-metric theories and that it is particularly convenient for gravitational phenomenology: test bodies have trajectories that are as close as possible to geodesics with respect to such a metric and equivalence principle violations are directly proportional to the scalar coupling parameters written in this frame. We show how RG flow and decoupling work in metric and non-metric theories. RG-running commutes with the operation of switching between frames at different scales. When only matter loops are considered, our analysis confirms that metricity is stable under radiative corrections and shows that approximate metricity is natural in a technical sense.Comment: 10 pages. Minor changes to the main text, appendix added. To appear on PR

    Modelling of timber joints in traditional structures

    Get PDF
    Original unstrengthened timber connections and the effects of different strengthening techniques have been evaluated experimentally with tests on full-scale birdsmouth joints. Experimental results show that structural response of traditional timber connections under cyclic loading cannot be represented by common constraint models, like perfect hinges or rigid joints, but should be using semi-rigid and friction based models. A research program has investigated the behaviour of old timber joints and examined strengthening criteria. The main parameters affecting the mechanical behaviour of the connection have been singled out. A synthetic model of cyclic behaviour has been adapted on the basis of experimental results

    Behaviour of traditional Portuguese timber roof structures

    Get PDF
    The aim of this paper is to present the results of a structural analysis of common trusses traditionally used in roof construction in Portugal. The study includes the results of a preliminary survey intending to assess the geometry, materials and on site pathologies, as well as a twodimensional linear elastic static and dynamic analysis. The trusses behaviour under symmetric and non-symmetric loads, the king post/tie-beam connection, the stiffness of the joints and the incorrect positioning of the purlins, were some of the structural aspects that have been investigated

    Path integral quantization of the relativistic Hopfield model

    Get PDF
    The path integral quantization method is applied to a relativistically covariant version of the Hopfield model, which represents a very interesting mesoscopic framework for the description of the interaction between quantum light and dielectric quantum matter, with particular reference to the context of analogue gravity. In order to take into account the constraints occurring in the model, we adopt the Faddeev-Jackiw approach to constrained quantization in the path integral formalism. In particular we demonstrate that the propagator obtained with the Faddeev-Jackiw approach is equivalent to the one which, in the framework of Dirac canonical quantization for constrained systems, can be directly computed as the vacuum expectation value of the time ordered product of the fields. Our analysis also provides an explicit example of quantization of the electromagnetic field in a covariant gauge and coupled with the polarization field, which is a novel contribution to the literature on the Faddeev-Jackiw procedure.Comment: 16 page

    Improved local-constant-field approximation for strong-field QED codes

    Get PDF
    The local-constant-field approximation (LCFA) is an essential theoretical tool for investigating strong-field QED phenomena in background electromagnetic fields with complex spacetime structure. In our previous work [Phys.~Rev.~A~\textbf{98}, 012134 (2018)] we have analyzed the shortcomings of the LCFA in nonlinear Compton scattering at low emitted photon energies for the case of a background plane-wave field. Here, we generalize that analysis to background fields, which can feature a virtually arbitrary spacetime structure. In addition, we provide an explicit and simple implementation of an improved expression of the nonlinear Compton scattering differential probability that solves the main shortcomings of the standard LCFA in the infrared region, and is suitable for background electromagnetic fields with arbitrary spacetime structure such as those occurring in particle-in-cell simulations. Finally, we carry out a systematic procedure to calculate the probability of nonlinear Compton scattering per unit of emitted photon light-cone energy and of nonlinear Breit-Wheeler pair production per unit of produced positron light-cone energy beyond the LCFA in a plane-wave background field, which allows us to identify the limits of validity of this approximation quantitatively.Comment: 15 pages, 3 figure

    Quintessence as a run-away dilaton

    Get PDF
    We consider a late-time cosmological model based on a recent proposal that the infinite-bare-coupling limit of superstring/M-theory exists and has good phenomenological properties, including a vanishing cosmological constant, and a massless, decoupled dilaton. As it runs away to ++ \infty, the dilaton can play the role of the quintessence field recently advocated to drive the late-time accelerated expansion of the Universe. If, as suggested by some string theory examples, appreciable deviations from General Relativity persist even today in the dark matter sector, the Universe may smoothly evolve from an initial "focusing" stage, lasting untill radiation--matter equality, to a "dragging" regime, which eventually gives rise to an accelerated expansion with frozen Ω(darkenergy)/Ω(darkmatter)\Omega(\rm{dark energy})/\Omega(\rm{dark matter}).Comment: 31 pages, latex, 5 figures included using epsfig. New references added and misprints corrected. To appear in Phys. Rev.

    A Multi Megawatt Cyclotron Complex to Search for CP Violation in the Neutrino Sector

    Full text link
    A Multi Megawatt Cyclotron complex able to accelerate H2+ to 800 MeV/amu is under study. It consists of an injector cyclotron able to accelerate the injected beam up to 50 MeV/n and of a booster ring made of 8 magnetic sectors and 8 RF cavities. The magnetic field and the forces on the superconducting coils are evaluated using the 3-D code OPERA. The injection and extraction trajectories are evaluated using the well tested codes developed by the MSU group in the '80s. The advantages to accelerate H2+ are described and preliminary evaluations on the feasibility and expected problems to build the injector cyclotron and the ring booster are here presented.Comment: Presentation at Cyclotron'10 conference, Lanzhou, China, Sept 7, 201

    The IR-Completion of Gravity: What happens at Hubble Scales?

    Full text link
    We have recently proposed an "Ultra-Strong" version of the Equivalence Principle (EP) that is not satisfied by standard semiclassical gravity. In the theory that we are conjecturing, the vacuum expectation value of the (bare) energy momentum tensor is exactly the same as in flat space: quartically divergent with the cut-off and with no spacetime dependent (subleading) ter ms. The presence of such terms seems in fact related to some known difficulties, such as the black hole information loss and the cosmological constant problem. Since the terms that we want to get rid of are subleading in the high-momentum expansion, we attempt to explore the conjectured theory by "IR-completing" GR. We consider a scalar field in a flat FRW Universe and isolate the first IR-correction to its Fourier modes operators that kills the quadratic (next to leading) time dependent divergence of the stress energy tensor VEV. Analogously to other modifications of field operators that have been proposed in the literature (typically in the UV), the present approach seems to suggest a breakdown (here, in the IR, at large distances) of the metric manifold description. We show that corrections to GR are in fact very tiny, become effective at distances comparable to the inverse curvature and do not contain any adjustable parameter. Finally, we derive some cosmological implications. By studying the consistency of the canonical commutation relations, we infer a correction to the distance between two comoving observers, which grows as the scale factor only when small compared to the Hubble length, but gets relevant corrections otherwise. The corrections to cosmological distance measures are also calculable and, for a spatially flat matter dominated Universe, go in the direction of an effective positive acceleration.Comment: 27 pages, 2 figures. Final version, references adde

    Heat wave propagation in a nonlinear chain

    Full text link
    We investigate the propagation of temperature perturbations in an array of coupled nonlinear oscillators at finite temperature. We evaluate the response function at equilibrium and show how the memory effects affect the diffusion properties. A comparison with nonequilibrium simulations reveals that the telegraph equation provides a reliable interpretative paradigm for describing quantitatively the propagation of a heat pulse at the macroscopic level. The results could be of help in understanding and modeling energy transport in individual nanotubes.Comment: Revised version, 1 fig. adde
    corecore