The path integral quantization method is applied to a relativistically
covariant version of the Hopfield model, which represents a very interesting
mesoscopic framework for the description of the interaction between quantum
light and dielectric quantum matter, with particular reference to the context
of analogue gravity. In order to take into account the constraints occurring in
the model, we adopt the Faddeev-Jackiw approach to constrained quantization in
the path integral formalism. In particular we demonstrate that the propagator
obtained with the Faddeev-Jackiw approach is equivalent to the one which, in
the framework of Dirac canonical quantization for constrained systems, can be
directly computed as the vacuum expectation value of the time ordered product
of the fields. Our analysis also provides an explicit example of quantization
of the electromagnetic field in a covariant gauge and coupled with the
polarization field, which is a novel contribution to the literature on the
Faddeev-Jackiw procedure.Comment: 16 page