
PATH INTEGRAL QUANTIZATION OF THE RELATIVISTIC HOPFIELD MODEL

F. BELGIORNO1,2, S.L. CACCIATORI3,4, F. DALLA PIAZZA5, AND M. DORONZO3

Abstract. The path integral quantization method is applied to a relativistically covariant version of the Hop-
field model, which represents a very interesting mesoscopic framework for the description of the interaction
between quantum light and dielectric quantum matter, with particular reference to the context of analogue
gravity. In order to take into account the constraints occurring in the model, we adopt the Faddeev-Jackiw
approach to constrained quantization in the path integral formalism. In particular we demonstrate that the
propagator obtained with the Faddeev-Jackiw approach is equivalent to the one which, in the framework of Dirac
canonical quantization for constrained systems, can be directly computed as the vacuum expectation value of
the time ordered product of the fields. Our analysis also provides an explicit example of quantization of the
electromagnetic field in a covariant gauge and coupled with the polarization field, which is a novel contribution
to the literature on the Faddeev-Jackiw procedure.

1. Introduction

In the context of the field represented by the interaction of the quantum electromagnetic field with quantum
matter two different approaches can be adopted: the first one involves a microscopic description of the field
and the second one considers a more phenomenological approach, in which some microscopic interactions are
described by means of effective fields. An example of this kind of approach is provided by models describing
interactions of the electromagnetic field with dielectric media,

which, beyond more standard applications to light-matter interactions, can be extended also to describe pair
creation induced by an external field, by moving boundaries or by inhomogeneities propagating in the medium.
Interest in this framework has been recently risen up, due to the attempt to reproduce quantum emission by
black hole in the lab by means of analogous systems, i.e. systems displaying the same kinematics which is at
the root of the Hawking effect [1–4].
With respect to the phenomenological quantization of the electromagnetic field in the presence of a dielectric
medium (as e.g. in [5]), the Hopfield model [6] is able to describe the observed behaviour of the electromagnetic
field in a class of transparent dielectric media by means of a very simple modeling of the matter itself, which
is described as a collection of independent oscillators responsible for the dispersive properties of the electro-
magnetic field in matter [7–9]. These matter field degrees of freedom are represented by means of mesoscopic
polarization fields. Despite its simplicity, the model is able to reproduce the Sellmeier dispersion relations,
which are fundamental features of light interactions in dielectric media. Still, in its original form the Hopfield
model is not able to provide a description involving explicit relativistic covariance, which appears to be a fun-
damental request as far as one is interested in the analogue Hawking effect, as well as other perturbative and
non perturbative effects in which an inhomogeneity propagates through a homogeneous background. Indeed,
the description of these phenomena requires the skill to move from an inertial frame to another one, for example
from the lab frame to the frame comoving with the perturbation. A relativistic covariant version of the Hopfield
model has been developed in [10], together with its covariant and gauge invariant quantization. Therein, the
quantization of a constrained system was taken into account by means of the Dirac quantization scheme, and
states were constructed in the interaction picture. The Dirac approach for constrained systems is probably
the most widely used [11–16]; it requires the identification and the classification of all the constraints of the
theory into two classes, together with the redefinition of new brackets, the so called Dirac brackets. In [17]
the quantization of the covariant Hopfield model was performed in the lab frame in a simple fixed gauge, in
order to study photon production originated by time-dependent perturbations. While the analogue Hawking
effect, beyond the analysis performed in [18–21], has been also analitically studied as a non perturbative effect
in a simplified model in [22]. The exact quantization of the model in absence of dielectric perturbations and
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in a generic covariant gauge, and the construction of the state in the Heisenberg representation have been im-
plemented in [23], where the mathematical issues and formal problems of the construction are discussed in detail.

An alternative and powerful way to quantize a theory is provided by the path integral approach. In this paper
we apply this quantization scheme to the relativistic covariant Hopfield model. Since the covariant Hopfield
model is quadratic in the fields, it is essentially characterized by the propagator, which in the path integral
quantization is obtained in a simpler manner than in the canonical quantization adopted in [23]. A difficulty
of the model is given by the presence of constraints (such as the transversality condition for the polarization
field), which impose to adopt a quantization method for constrained theories. The extension of the path integral
method to Dirac’s theory of constrained systems was presented in [25], with particular reference to first class
constraints, and in [26] with an analysis of second class constraints. An alternative to the Dirac’s method
is represented by the Faddeev-Jackiw procedure [27, 28], which, with an elegant analysis, leads to the correct
quantization without the necessity of the full Dirac machinery. In [29–32] (see also [16], section 4.4 therein) and,
in the recent paper [24] the implementation of the Faddeev-Jackiw method within the path integral approach
is discussed. We apply the Faddeev-Jackiw quantization scheme to the covariant version of the Hopfield model.
Our aim is two-fold: on one hand, we find that the Faddeev-Jackiw procedure is simpler than the Dirac one.
Indeed, applying this procedure to the Hopfield model, just one additional field appears in the quantization (see
Section 2.1), whereas three additional fields appear using the Dirac’s method (c.f. [10], Section 4). Moreover,
we obtain the same constraint, see Equation (2.13), as in the Dirac’s procedure. On the other hand, we also
obtain an explicit example of quantization of the electromagnetic field in a covariant gauge, with a further
difficulty represented by the coupling with the polarization field, which is missing in the previous literature on
the Faddeev-Jackiw procedure.
We point out that quantization of the original Hopfield model in non-covariant gauges and in presence of dissi-
pation is performed in [33,34]. In contrast, in our model there is no dissipation (which is a good approximation
as far as phenomena occurring far from the absorptive regions are taken into account), but full relativistic
covariance is accounted for.

The structure of the paper is the following. In Section 2.1 we will employ the Fadeev-Jackiw path integral
procedure to quantize the covariant Hopfield model which possesses a singular Lagrangian; in Section 2.2 we will
determine the exact propagator, discussing the right Feynman-Stückelberg prescription to be adopted; in Section
3 and in the appendices, we will demonstrate that the propagator obtained in this cleaner way is exactly equiv-
alent to the one directly computed as the vacuum expectation value of the time ordered product of the fields [23].

We conclude with some comments on notations: we shall use the symbol vvv for a space-time vector having
components vµ with µ = 0, . . . , 3, whereas its spatial component will be indicated with ~v or, more explicitly, vi

with i = 1, 2, 3. We shall use v2 for the scalar vvv2 = vvv ·vvv. Moreover, the Minkowski metric tensor is chosen with
the signature (+,−,−,−) and we take the speed of light c = 1.

2. Path integral formulation of the Hopfield model

In place of using the standard Dirac method for quantizing a theory with constraints, we will implement the
Faddeev-Jackiw method, which is based on recasting the Lagrangian in a first order formalism. We will refer
to [24]. For the sake of completeness, we recall the essential ingredients characterizing the method, referring to
the previously quoted literature for details. To a standard second order Lagrangian L(q, q̇) we can associate a

“symplectic” Lagrangian L = ωα(ξ)ξ̇
α − V (ξ) which is first order in time derivative ξ̇, where ξ = (q, p). The

first term in L defines the so-called canonical one-form ω := ωα(ξ)dξ
α. The second term V can be identified

with the Hamiltonian. The Euler-Lagrange equations become

Ωαβ ξ̇
β =

∂V

∂ξα
, (2.1)

where

Ωαβ :=
∂

∂ξα
ωβ −

∂

∂ξβ
ωα, (2.2)
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is the antisymmetric two-form associated with L. If det(Ω) 6= 0, there is no constraint in the theory and
quantization can proceed along the usual procedure. If instead det(Ω) = 0, null eigenvectors zI of Ω, such that

zαI Ωαβ = 0, (2.3)

are present, and their contraction with the equations of motion (2.1)

ΛI := zαI
∂V

∂ξα
= 0, (2.4)

correspond to constraints ΛI = 0 of the theory. These constraints are then added to L by introducing suitable
Lagrange multipliers yI , obtaining a new Lagrangian L′ in the extended canonical variables (ξα, yI):

L′ := L+ yIΛI . (2.5)

A new canonical one-form ω′ and a new two-form Ω′ are obtained. If det(Ω′) 6= 0, the procedure ends; if not,
the procedure is iterated till a nonsingular two-form is obtained by adding to the Lagrangian a suitable set of
constraints obtained as above.
In the path-integral approach, the measure is chosen according to the prescription in [24].

2.1. The Fadeev-Jackiw approach to path integral quantization. In order to apply the Faddeev-Jackiw
method, let us first note that the (auxiliary) field B appears already at first order in the equations of motion, so
we need only to introduce the momenta of the electromagnetic AAA and of the polarization PPP fields. Indeed, the
Lagrangian for the covariant relativistic Hopfield model for a single polarization field with resonance frequency
ω0 is [10]:

L =−
1

16π
FµνF

µν −
1

2χω2
0

[(vρ∂ρPµ)(v
ρ∂ρP

µ)] +
1

2χ
PµP

µ −
g

2
(vµPν − vνPµ)F

µν

+B(∂µA
µ) +

ξ

2
B2 + λ(vµP

µ), (2.6)

where χ is the susceptibility, g a coupling constant, ξ the gauge fixing constant and λ a lagrangian multiplier to
impose the transversality condition for the polarization field. In the first order formalism the Lagrangian reads:

L({XXX} , {ΠΠΠ}) = Πµ
AAAȦµ +Πµ

PPP Ṗµ + λ(vµP
µ)−H, (2.7)

with

H = 2π~Π2
AAA +

1

16π

3
∑

i,j=1

FijF
ij −A0

3
∑

i=1

∂xiΠi
AAA − 4πg

3
∑

i=1

(v0Pi − viP0)Π
i
AAA −

3
∑

j=1

vj

v0
∂xjPPP ·ΠΠΠPPP (2.8)

−
χ0ω

2
0

2v20
ΠPΠPΠP ·ΠPΠPΠP −

1

2χ0
PPP ·PPP + 2πg2(v0 ~P − ~vP0)

2 + g

3
∑

i,j=1

viPjF
ij −B

3
∑

i=1

∂xiAi −
ξ

2
B2, (2.9)

and {XXX}, {ΠΠΠ} stand for the collection of the fields and the momenta respectively. We can slightly generalise
the procedure explained in [24] by treating the field B apart, so that we introduce the canonical variables

ξα =
(

Πµ
AAA;Aµ; Π

µ
PPP ;Pµ;λ

)

, (2.10)

and the components of the canonical one-form ω, as can be read from (2.7), are:

ωΠµ

AAA
= 0,

ωAµ
= Πµ

AAA,

ωΠµ

PPP
= 0,

ωPµ
= Πµ

PPP ,

ωλ = vµP
µ. (2.11)
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If we choose ξα and ξβ with all the fields evaluated respectively at some spatial coordinate ~x and ~x′, the
symplectic two-form Ωξαξβ = δ

δξαωξβ − δ
δξβ ωξα will take the form

Ωξαξβ =













0 δµν 0 0 0
−δνµ 0 0 0 0
0 0 0 δµν 0
0 0 −δνµ 0 vν

0 0 0 −vµ 0













δ(~x, ~x′). (2.12)

Since the canonical variables are odd, we expect an odd number of missing constraints. Indeed, the first order
Lagrangian is singular, i.e. det (Ωξαξβ ) = 0, with kernel of dimension one, generated by z ≡ (0µ; 0µ; v

µ; 0µ; 1).
This mode is associated to a new constraint Λ:

0 = Λ = zα
δ

δξα
H = vµ

δ

δΠµ
PPP

H =
vµ

v0

(

vk∂kPµ +
χω2

0

v0
ΠPPPµ

)

. (2.13)

Inserting it into the Lagrangian in the first order formalism it yields

L({XXX} , {ΠΠΠ}) = Πµ
AAAȦµ +Πµ

PPP Ṗµ + λ(vµP
µ) + y

[

vµ

v0

(

vk∂kPµ +
χω2

0

v0
ΠPPPµ

)]

−H. (2.14)

Thus, we must extend the canonical variables to

ξα =
(

Πµ
AAA;Aµ; Π

µ
PPP ;Pµ;λ; y

)

, (2.15)

and add the conjugate momentum

ωy =
vµ

v0

(

vk∂kPµ +
χω2

0

v0
ΠPPPµ

)

. (2.16)

With the addition of the y field, the symplectic two-form becomes

Ωξαξβ =





















0 δµν 0 0 0 0
−δµν 0 0 0 0 0

0 0 0 δµν 0
χω2

0

v2
0
vν

0 0 −δµν 0 vν vν

v0
vk∂k

0 0 0 −vµ 0 0

0 0 −
χω2

0

v2
0
vν − 1

v0
vνvk∂k 0 0





















δ(~x, ~x′), (2.17)

which has non-singular determinant

(

det (Ωξαξβ )
)1/2

= det

[

χω2
0

2v20
δ(~x, ~x′)

]

. (2.18)

Following Toms [24], we can proceed with the path integral approach and the path integral measure is:

dµ =

(

∏

α

Dξα

)

DB(det Ω)1/2. (2.19)

Hence for the partition function we get

Z0 =

∫∫∫

[DAAADΠAΠAΠADPPPDΠPΠPΠPDBDλDy] (detΩ)1/2 exp

{

i

∫

L({XXX} , {ΠΠΠ})d4xxx

}

, (2.20)

with L given by (2.14). In order to recover the standard configuration space path integral we have to integrate
over all momenta and the multiplicator fields. The integration over ΠAΠAΠA is immediate, while integration1 over
ΠPΠPΠP gives the contribution
∫∫∫

∏

µ

[

DΠµ
PPP

]

exp

{

i

∫ [

χω2
0

2v20
ΠPPPµΠ

µ
PPP +

(

Ṗµ + y
χω2

0

v20
vµ +

vk

v0
∂kPµ

)

Πµ
PPP

]

d4xxx

}

=
(π

a

)2

exp

(

−
bµb

µ

4a

)

, (2.21)

1It’s a Gaussian integral.
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where a =
χω2

0

2v2
0
and bµ = Ṗµ + y

χω2
0

v2
0
vµ + vk

v0
∂kPµ. Similarly, integration over y gives the contribution

v0
ω0

√

2π

χ
exp

(

v20
2χω2

0

(vµṖ
µ)2
)

, (2.22)

so that

Z0 = N

∫∫∫

[DAAADPPPDBDλ] exp

{

i

∫ [

L(AAA,PPP ,B, λ) +
1

2χω2
0

(vρv
0∂0P

ρ)(vσv
0∂0P

σ)

]

d4xxx

}

, (2.23)

where N is a normalisation constant. Integration over λ gives a factor δ(vvv ·PPP ), so that finally we get

Z0 = N

∫∫∫

[DAAADPPPDB] δ(vvv ·PPP ) exp

{

i

∫

L(AAA,PPP,B)d4xxx

}

. (2.24)

Obviously the normalisation must be such that Z0 = 1.

2.2. Determination of the propagator. After introducing the currents JAJAJA,JPJPJP and JB , we can define the
functional generating the propagators:

Z[JAJAJA,JPJPJP , JB] =

∫∫∫

[DAAADPPPDB]δ(vvv ·PPP ) exp

{

i

∫

R4

L(AAA,PPP ,B)d4xxx+ i

∫

R4

Jµ
AAAAµd

4xxx+ i

∫

R4

Jµ
PPPPµd

4xxx+

i

∫

R4

JBBd4xxx

}

. (2.25)

In order to compute it, we rewrite the delta function in terms of the integration over the field λ, by restoring
the Lagrangian L ≡ L(AAA,PPP ,B, λ) of (2.6). Moreover, we introduce the current Jλ, which will be set to zero at
the end of the calculation, in order to simplify some technical step. Thus, we consider the generating functional

Z[JAJAJA,JPJPJP , JB, Jλ] =

∫∫∫

[DAAADPPPDBDλ] exp

{

i

∫

R4

L(AAA,PPP ,B, λ)d4xxx+ i

∫

R4

Jµ
AAAAµd

4xxx+ i

∫

R4

Jµ
PPPPµd

4xxx+

i

∫

R4

JBBd4xxx+ i

∫

R4

Jλλd
4xxx

}

. (2.26)

After passing to the Fourier transforms of the fields and the currents, we proceed in the usual way

Z[JAJAJA,JPJPJP , JB, Jλ] =

∫∫∫

[DAAADPPPDBDλ̃] exp

{

−
i

2

∫

R4

d4kkk

(2π)4
ṼVV (−kkk)Miε(kkk)ṼVV (kkk)

+
i

2

∫

R4

d4kkk

(2π)4

[

J̃JJVVV (−kkk)
T ṼVV (kkk) + ṼVV (−kkk)T J̃JJVVV (kkk)

]

}

, (2.27)

where

ṼVV =









AAA
PPP
B

λ̃









, (2.28)

and

J̃JJVVV =









J̃JJAAA

J̃JJPPP

J̃B
J̃λ









, (2.29)

are the Fourier transform of the fields and the currents respectively, and we have introduced the Feynman-
Stückelberg prescription, to be correctly identified, associated to the Fourier space operator

MṼVV ≡











1
4π (k

2I− kkkkkkt) ig(ωI− vvvkkkt) −ikkk 000

−ig(ωI− kkkvvvt) 1
χ

(

ω2

ω2
0
− 1
)

I 000 vvv

ikkkt 000t −ξ 0
000t vvvt 0 0



















AAA
PPP
B

λ̃









=









0
0
0
0









, (2.30)
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where ω := kµvµ, kkk is a column vector, kkkt a row vector, and so on. The determinant of this matrix is

detM = −
(k2)2

4πω6
0χ

3

(

ω2 − ω2
0

)2
[

k2

4π
−

g2χω2
0ω

2

ω2 − ω2
0

]2

(ω2 − ω̄2), (2.31)

so that M−1 is singular at k2 = 0, and2

k2

4π
−

g2χ0ω
2
0ω

2

ω2 − ω2
0

= 0, ω2 − ω̄2 = 0, (2.32)

thus requiring a prescription in order to avoid singularities on the real spectrum. Let us postpone momentarily
its specification. Then, we can proceed as usual by shifting the fields

ṼVV (kkk) = M−1
iε (kkk)J̃JJVVV (kkk) + Φ̃ΦΦ(kkk), (2.33)

where

Φ̃ΦΦ ≡









aaa
ppp
b

φ̃









, (2.34)

so that

Z[JAJAJA,JPJPJP , JB , Jλ] = exp

{

i

2

∫

R4

d4kkk

(2π)4
e−ikkk·(xxx−yyy)J̃JJVVV (−kkk)

TM−1
iε (kkk)J̃JJVVV (kkk)

}

·

·

∫∫∫

[DaaaDpppDbDφ̃] exp

{

−
i

2

∫

R4

d4kkk

(2π)4
Φ̃ΦΦ(−kkk)Miε(kkk)Φ̃ΦΦ(kkk)

}

(2.35)

and, since

Z[000,000, 0, 0] = Z0 = 〈0|0〉 = 1 (2.36)

after setting Jλ = 0, we finally get

Z[JAJAJA,JPJPJP , JB] = exp

{

i

2

∫

R4×R4

d4xxxd4yyyJJJT (xxx)GGGF (xxx − yyy)JJJ(yyy)

}

, (2.37)

where

JJJ(xxx) =





JAJAJA
JPJPJP
JB



 , (2.38)

and

GGGF (xxx) =

∫

R4

d4kkk

(2π)4
e−ikkk·xxxM̄−1

iε (kkk). (2.39)

Here, with M̄−1
iε (kkk) we mean the reduction of the matrix M−1

iε (kkk) after dropping the last row and last column
out, as specified below in (2.47).
Now, we specify the Feynman-Stückelberg prescription (more on this can be found in Appendix B). We define
it by means of the complex shifts k2 → k2 + iε, ω2

0 → ω2
0 − iε, t.i.:

Miε(kkk) :=











1
4π ((k

2 + iε)I− kkkkkkt) ig(ωI− vvvkkkt) −ikkk 000

−ig(ωI− kkkvvvt) 1
χ

(

ω2

ω2
0−iε

− 1
)

I 000 vvv

ikkkt 000t −ξ 0
000t vvvt 0 0











(2.40)

2Note that the determinant does not vanish when ω
2 = ω

2

0
.
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from which we get

M−1
iε (kkk) =













M−1
iε Niε −i 1

k2+iεkkk 000

N †
iε Qiε +

χ(ω2
0−iε)

ω2−ω2
0+iε

(I− vvvvvvt) 000 vvv

i 1
k2+iεkkk

t 000t 0 0

000t vvvt 0 −
ω2−ω2

0+iε

χ(ω2
0−iε)













. (2.41)

where

M−1
iε =

1

k2+iε
4π −

g2χω2
0ω

2

ω2−ω2
0

I+





1

(k2 + iε)2



ξ −
1

1
4π −

g2χ(ω2
0−iε)

ω2−ω2
0+iε





+
1

k2+iε
4π −

g2χ(ω2
0−iε)ω2

ω2−ω2
0+iε

1

k2 + iε

1

1
4π −

g2χ(ω2
0−iε)

ω2−ω2
0+iε

g2χ(ω2
0 − iε)

ω2 − ω2
0 + iε



kkkkkkt

−
4π

k2+iε
4π −

g2χ(ω2
0−iε)ω2

ω2−ω2
0+iε

ω2 − ω2
0 + iε

ω2 − ω̄2 + iε

g2χ(ω2
0 − iε)

ω2 − ω2
0 + iε

[

ω
(kkkvvvt + vvvkkkt)

k2 + iε
− vvvvvvt

]

(2.42)

is the inverse of the matrix

Miε =

(

k2 + iε

4π
−

g2χ(ω2
0 − iε)ω2

ω2 − ω2
0 + iε

)

I−
1

4π

(

1−
4π

ξ

)

kkkkkkt + ω
g2χ(ω2

0 − iε)

ω2 − ω2
0 + iε

(kkkvvvt + vvvkkkt)

− (k2 + iε)
g2χ(ω2

0 − iε)

ω2 − ω2
0 + iε

vvvvvvt, (2.43)

whereas

Niε = −ig
χ(ω2

0 − iε)

ω2 − ω2
0 + iε

M−1(ωI− vvvkkkt)

= −ig
χ(ω2

0 − iε)

ω2 − ω2
0 + iε

1

k2+iε
4π −

g2χ(ω2
0−iε)ω2

ω2−ω2
0+iε



ωI+
1

1
4π −

g2χ(ω2
0−ε)

ω2−ω2
0+iε

ωg2χ(ω2
0 − iε)

ω2 − ω2
0 + iε

(

vvvvvvt

+
1

k2 + iε
kkkkkkt −

ω

k2 + iε
vvvkkkt −

ω2 − ω2
0 + iε

4πωg2χ(ω2
0 − iε)

kkkvvvt
)]

, (2.44)

N †
iε = ig

χ(ω2
0 − iε)

ω2 − ω2
0 + iε

(ωI− vvvkkkt)M−1

= ig
χ(ω2

0 − iε)

ω2 − ω2
0 + iε

1

k2+iε
4π −

g2χ(ω2
0−iε)ω2

ω2−ω2
0+iε



ωI+
1

1
4π −

g2χ(ω2
0−ε)

ω2−ω2
0+iε

ωg2χ(ω2
0 − iε)

ω2 − ω2
0 + iε

(

vvvvvvt

+
1

k2 + iε
kkkkkkt −

ω

k2 + iε
vvvkkkt −

ω2 − ω2
0 + iε

4πωg2χ(ω2
0 − iε)

kkkvvvt
)]

. (2.45)

Notice that N †
iε is the Hermitian conjugate of Niε only when ε = 0. Finally

Qiε = g2
χ2(ω2

0 − iε)2

(ω2 − ω2
0 + iε)2

(ωI− kkkvvvt)M−1(ωI− vvvkkkt)

= g2
χ2(ω2

0 − iε)2

(ω2 − ω2
0 + iε)2

1

k2+iε
4π −

g2χ(ω2
0−iε)ω2

ω2−ω2
0+iε



ω2
I

+
1

1
4π −

g2χ(ω2
0−iε)

ω2−ω2
0+iε

(

g2χ(ω2
0 − iε)ω2

ω2 − ω2
0 + iε

vvvvvvt −
ω

4π
(kkkvvvt + vvvkkkt) +

1

4π
kkkkkkt
)



 . (2.46)
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A deduction of these formulas is presented in Appendix A.
In conclusion

M̄−1
iε (kkk) =







M−1
iε Niε −i 1

k2+iεkkk

N †
iε Qiε +

χ(ω2
0−iε)

ω2−ω2
0+iε

(I− vvvvvvt) 000

i 1
k2+iεkkk

t 000t 0






. (2.47)

2.2.1. Remark: A comment is in order. The consistency of the constraints would require to impose the condition
vvv · JJJPPP = 0 also. However, because of the condition vvv · PPP = 0, we see that after leaving JJJPPP unconstrained we
have that

vµ
δ

δJµ
P (xxx)

Z[JAJAJA,JPJPJP , JB] = 0, (2.48)

so we don’t need to take care of the constraint. This is consistent with the fact that the vector

VVV 0 =





000
vvv
0



 , (2.49)

is in both the left kernel and the right kernel of (2.47).

2.2.2. Remark: Exactly the same result can be obtained by using the Dirac procedure, even though in that case
one has to introduce a larger number of auxiliary fields, see [10]. Another way to apply the Faddeev-Jackiw
method is to generate a canonical momentum for the field B by adding a kinematical therm for it. In this case
the Lagrangian becomes

L =−
1

16π
FµνF

µν −
1

2χω2
0

[(vρ∂ρPµ)(v
ρ∂ρP

µ)] +
1

2χ
PµP

µ −
g

2
(vµPν − vνPµ)F

µν

+B(∂µA
µ) +

ξ

2
B2 −

ξ̄

2
(∂µB)(∂µB) + λ(vµP

µ), (2.50)

and the momentum conjugate to B is ΠB = − ξ̄
c∂0B. In this way the field B can be included exactly at the

same footing as the other fields, and proceeding as above one finally gets the same result where now in the
momentum space ξ is replaced by ξ+ ξ̄k2. However, the price would be to introduce a new parameter, ξ̄, which
is expected to be zero, since we have not vacuum polarization (see [14]). Moreover, B appears at first order in
the equations of motion, already in the starting problem. Thus, there are no reasons for promoting it to the
second order with the aim of going back to the first order formalism.

3. The propagator

The exact propagator GGG(xxx,yyy) of the relativistic Hopfield model has been computed in [23] by using the
oscillator representation. For convenience we report here the result. It can be written as

iGIJ (xxx,yyy) = 〈0|T (ΦI(xxx)ΦJ (yyy))|0〉, I, J = 1, . . . , 9, (3.1)

where

ΦI =











AI−1 if I = 1, 2, 3, 4,

P I−5 if I = 5, 6, 7, 8,

B if I = 9,

(3.2)

and takes the form

GIJ (xxx,yyy) = GIJ (xxx,yyy)+θ(x
0 − y0) +GIJ (xxx,yyy)−θ(y

0 − x0), (3.3)
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where

iG(µ+1)(ν+1)(xxx,yyy)+ =〈0|Aµ(xxx)Aν(yyy)|0〉

=

∫

R3

d3~k

(2π)3
e−ikkk+·(xxx−yyy) v

µkν+ + vνkµ+

|~k|ω+

π

(

ξ

4π
+

ω2
+ − ω2

0

ω2
+ − ω̄2

)

− i

∫

R3

d3~k

(2π)3
e−ikkk+·(xxx−yyy) (xxx − yyy) · vvv

|~k|ω+

(

ξ

4π
−

ω2
+ − ω2

0

ω2
+ − ω̄2

)

πkµkν

+

∫

R3

d3~k

(2π)3
e−ikkk+·(xxx−yyy)

ξ
4π (ω

2
+ − ω̄2)2 + (ω2

+ − ω2
0)(ω

2
+ − ω̄2)− 8πω2

+g
2χω2

0

ω3
+|
~k|(ω2

+ − ω̄2)2
πkµkν

+
8π2g2χω2

0

ω̄v0

∫

R3

d3~k

(2π)3
e−ikkk>·(xxx−yyy) 1

ω̄2 − k2>

(

vµ −
ω̄

k2>
kµ>

)(

vν −
ω̄

k2>
kν>

)

+

2
∑

a=1

2
∑

i=1

∫

R3

d3~k

(2π)3
e−ikkk(a)·(xxx−yyy) e

(a)µ
i (~k)e

(a)ν
i (~k)

DR′
(a)(

~k)
; (3.4)

iG(µ+1)(ν+5)(xxx,yyy)+ =〈0|Aµ(xxx)P ν(yyy)|0〉

=− i

∫

R3

d3~k

(2π)3
e−ikkk+·(xxx−yyy) 2πgχω

2
0

|~k|ω+

ω+k
µ
+v

ν − kµ+k
ν
+

(ω2
+ − ω̄2)

− i
2πgω2

0χ

ω̄v0

∫

R3

d3~k

(2π)3
e−ikkk>·(xxx−yyy) 1

ω̄2 − k2>

(

vµ −
ω̄

k2>
kµ>

)

(ω̄vν − kν>)

− igχω2
0

2
∑

a=1

2
∑

i=1

∫

R3

d3~k

(2π)3
e−ikkk(a)·(xxx−yyy) ω(a)

ω2
(a) − ω2

0

e
(a)µ
i (~k)e

(a)ν
i (~k)

DR′
(a)(

~k)
; (3.5)

iG(µ+1)9(xxx,yyy)+ =〈0|Aµ(xxx)B(yyy)|0〉 = −
i

2

∫

R3

d3~k

(2π)3
e−ikkk+·(xxx−yyy) k

µ

|~k|
; (3.6)

iG(µ+5)(ν+5)(xxx,yyy)+ =〈0|Pµ(xxx)P ν(yyy)|0〉

=
χω2

0

2ω̄v0

∫

R3

d3~k

(2π)3
e−ikkk>·(xxx−yyy) 1

ω̄2 − ω2
0

(ω̄vµ − kµ>)(ω̄v
ν − kν>)

+ g2χ2ω4
0

2
∑

a=1

2
∑

i=1

∫

R3

d3~k

(2π)3
e−ikkk(a)·(xxx−yyy) ω(a)

ω2
(a) − ω2

0

e
(a)µ
i (~k)e

(a)ν
i (~k)

DR′
(a)(

~k)
; (3.7)

iG(µ+5)9(xxx,yyy)+ =〈0|Pµ(xxx)B(yyy)|0〉 = 0; (3.8)

iG99(xxx,yyy)+ =〈0|B(xxx)B(yyy)|0〉 = 0. (3.9)

We refer to [23] for the notations. We want to compare this expression for the propagator with the results of
the previous section. Our main result is

Proposition 3.1. The propagator is

GGG(xxx,yyy) =GGGF (xxx− yyy), (3.10)

The proof of this proposition is given in Appendix B.
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4. Conclusions

In this paper we have dealt with the quantization of the relativistic covariant Hopfield model via the path
integral approach. As our model is Gaussian, it is completely determined by the two point function, i.e. the
propagator, which can be computed either in a canonical quantization approach as the two point function
of the fields (as we did in [23], with considerable efforts), or in a relatively straightforward way in the path
integral formulation. Due to the presence of a constraint in the theory, the path integral implementation of
the Faddeev-Jackiw method for constrained theories has been used. In contrast to the more standard Dirac’s
method, which was adopted in [10, 23], the Faddev-Jackiw approach is simpler and avoids the division of the
constraints into different classes and the redefinition of the Poisson brakets. This represents our first interesting
contribution, as we provide a non-trivial example for the electromagnetic field quantization in a covariant gauge
in the Faddeev-Jackiw framework.
In particular, starting from the singular Lagrangian (2.6), we have obtained a new constraint, Λ, which is
identical to the one which emerged as a second-class second-stage constraint in the Dirac’s procedure [10].
Computing the functional measure for the path integral has been then straightforward, as also pointed out by
Toms [24], and the standard procedure for determining the quantum field theory partition function in terms
of the propagator has been implemented. An important question to be taken into account has been the right
choice for the Feynman-Stückelberg prescription, as pointed out in Appendix B, which must ensure that positive
square norm states propagate forward in time.
A further key-result of our analysis consists in the equivalence between the exact propagator obtained from the
direct calculation, coming from the canonical quantization formalism, and the one coming from the Faddeev-
Jackiw path integral quantization.
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Appendix A. Computation of M−1

For simplicity, we will compute the matrix M−1 for ε = 0, from which the computation of M−1
iε is obvious.

For this, we apply the Gauss method to the matrix











1
4π (k

2I− kkkkkkt) ig(ωI− vvvkkkt) −ikkk 000

−ig(ωI− kkkvvvt) 1
χ

(

ω2

ω2
0
− 1
)

I 000 vvv

ikkkt 000t −ξ 0
000t vvvt 0 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

I O 000 000
O I 000 000
000t 000t 1 0
000t 000t 0 1









. (A.1)

First we multiply the third line by −1/ξ, then we add it, multiplied by the column ikkk from the left, to the first
line and multiply the second line by χω2

0(ω
2 − ω2

0)
−1 to get













1
4π

(

k2I−
(

1− 4π
ξ

)

kkkkkkt
)

ig(ωI− vvvkkkt) 000 000

−ig
χω2

0

(ω2−ω2
0)
(ωI− kkkvvvt) I 000

χω2
0

(ω2−ω2
0)
vvv

− i
ξkkk

t 000t 1 0

000t vvvt 0 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

I O − i
ξkkk 000

O
χω2

0

(ω2−ω2
0)
I 000 000

000t 000t − 1
ξ 0

000t 000t 0 1











. (A.2)

Next, to the first line we subtract the second one multiplied by ig(ωI− vvvkkkt) from the left, and we get











M O 000 000

−ig
χω2

0

(ω2−ω2
0)
(ωI− kkkvvvt) I 000

χω2
0

(ω2−ω2
0)
vvv

− i
ξkkk

t 000t 1 0

000t vvvt 0 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

I −ig
χω2

0

(ω2−ω2
0)
(ωI− vvvkkkt) − i

ξkkk 000

O
χω2

0

(ω2−ω2
0)
I 000 000

000t 000t − 1
ξ 0

000t 000t 0 1













, (A.3)

with M as in (2.43), with ε = 0. At this point we need to compute M−1. Since M is a span of the 4×4 identity
I and the symmetric tensors of rank two generated by kkk and vvv, the same must happen for M−1, so we look for
it as a matrix of the form

M−1 = α0I+ α1kkkkkk
t + α2(kkkvvv

t + vvvkkkt) + α3vvvvvv
t. (A.4)

From this, by imposing M−1M = I we get (2.42). Then, we first multiply the first line of (A.3) by M−1, and
next we add it to the third line after multiplication by ikkkt/ξ from the left:











I O 000 000

−ig
χω2

0

(ω2−ω2
0)
(ωI− kkkvvvt) I 000

χω2
0

(ω2−ω2
0)
vvv

000t 000t 1 0
000t vvvt 0 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

M−1 N −i kkk
k2 000

O
χω2

0

(ω2−ω2
0)
I 000 000

ikkk
t

k2 000t 0 0
000t 000t 0 1











, (A.5)

where N is given in (2.44) and we used that kkktN = 0. To the second line we add the first one multiplied by

ig
χω2

0

(ω2−ω2
0)
(ωI − kkkvvvt) from the left, and then we subtract the second line multiplied by vvvt from the left, to the

fourth line, thus getting











I O 000 000

O I 000
χω2

0

(ω2−ω2
0)
vvv

000t 000t 1 0

000t 000t 0 −
χω2

0

(ω2−ω2
0)

∣

∣

∣

∣

∣

∣

∣

∣

∣

M−1 N −i kkk
k2 000

N † Q+
χω2

0

(ω2−ω2
0)
I 000 000

ikkk
t

k2 000t 0 0

000t −
χω2

0

(ω2−ω2
0)
vvvt 0 1













, (A.6)

with N † and Q given as in (2.45) and (2.46) respectively. Finally, we add the last row multiplied by vvv from the

right to the second line, and next multiply the last row by −
(ω2−ω2

0)

χω2
0

, and we get the desired result (2.41).
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Appendix B. On the propagator

In order to prove proposition 3.1 we need to integrate out the k0 direction in (3.10). This can be done as
usual by means of the methods of complex integration. The prescription must ensure that positive square norm
states propagate forward in time. Since the modes have dispersion relations

0 = ω2 − ω̄2, (B.1)

0 = k2

4π −
g2χω2

0ω
2

ω2−ω2
0
, (B.2)

0 = k2, (B.3)

which we will call the b-mode, the transverse modes, and the free photon modes respectively, we see that, given
our signature for the metric, the right prescription for the free photon modes is k2 → k2 + iε, whereas for the
b-mode we can equivalently put ω2 → ω2 + iε or ω2

0 → ω2
0 − iε. However, these two choices are not equivalent

for the transverse modes and we now show how the latter choice is the right one.

Lemma B.1. The right prescription for the correct propagation of all modes is k2 → k2+ iε and ω2
0 → ω2

0 − iε.

Proof. In order to prove the lemma, let us notice that the propagation in time is provided by the phase factor

e−ikkk·(xxx−yyy) = e−ik0(x0−y0)ei
~k·(~x−~y). (B.4)

For x0 > y0, the k0 path must be closed with negative imaginary part in order to apply correctly the residue
theorem. So, the poles in k0 with negative imaginary part will contribute to the integral. This means that are
just the poles corresponding to positive norm states that must have negative imaginary part. This justifies the
iε prescription for the free photon modes and for the b-mode. For the transverse modes, since in this case the
positive norm states correspond to positive values of DR′

(a), we must check that the solutions of

0 =
k2 + iε

4π
−

g2χ(ω2
0 − iε)ω2

ω2 − ω2
0 + iε

(B.5)

with negative imaginary part correspond exactly to the solution with positive DR′
(a). To this end we write the

equation in the form

(k2 + iε)(ω2 − ω2
0 + iε) = 4πg2χ(ω2

0 − iε)ω2 (B.6)

and set k0ε = k0 + ig(~k)ε+ o(ε). After substitution we get immediately

g(~k) = −
1

2DR′
(a)(

~k)

[

1 +
4πg2χω4

(a)

(ω2
(a) − ω2

0)
2

]

, (B.7)

which proves the lemma. �

Now we can proceed with the proof of the proposition. Following the notations of section 2.1, the matrix
M−1

iε is written as a 3× 3 block matrix, see (2.47). In this way we can separate the proof in the following steps.

B.1. (3.4). We will prove that

G(µ+1)(ν+1)(xxx,yyy) =

∫

R4

d4kkk

(2π)4
M−1

iε (kkk)
1,1

e−ikkk·(xxx−yyy) =

∫

R4

d4kkk

(2π)4
M−1

iε (kkk)e−ikkk·(xxx−yyy), (B.8)

where 1, 1 indicates the first (4 × 4) block. We need only to prove it for the inward propagation, that is when
closing clockwise the path (when x0 − y0 > 0). There are three kinds of contributions to the residua.
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B.1.1. The k0 = k0>k0 = k0>k0 = k0> pole. This gives the contribution to the b-mode. Looking at M−1
iε , we see that the polar

part in k0> is



−
1

(k2)2
4π(ω2 − ω2

0)

ω2 − ω̄2 + iε
+

4πg2χω2
0

[

k2

4π −
g2χω2

0ω
2

ω2−ω2
0

]

k2

1

ω2 − ω̄2 + iε



 kµkν

−
4πg2χω2

0
[

k2

4π −
g2χω2

0ω
2

ω2−ω2
0

]

(ω2 − ω̄2 + iε)

[ ω

k2
(kµvν + kνvµ)− vµvν

]

. (B.9)

In order to apply the residuum theorem, we note that for ω = ω̄ we have

k2

4π
−

g2χω2
0ω

2

ω2 − ω2
0

=
1

4π

(

k2 − ω̄2
)

(B.10)

which substituted above and remembering a −2πi factor, reproduces exactly the fourth row of (3.4).

B.1.2. The k0 = k0(a)k0 = k0(a)k0 = k0(a) poles. These give the contributions to the transverse modes. Near the pole k0 = k0(a) the

matrix M−1 is nearly

M−1
iε ≃

1

k0 − k0(a) + iε

1

DR′
(a)(

~k)

[

ηµν +
4πg2χω2

0

k2(a)(ω
2
(a) − ω2

0)
kµ(a)k

ν
(a)

−
4πg2χω2

0

ω2
(a) − ω2

0

(

ω(a)

k2(a)
(kµ(a)v

ν + kν(a)v
µ)− vµvν

)]

. (B.11)

By using that

ω2
(a)

k2(a)
=

ω2
(a) − ω2

0

4πg2χω2
0

, (B.12)

ω2
(a)

k2(a)
− 1 =

ω2
(a) − ω̄2

4πg2χω2
0

, (B.13)

we see that contracting with vν or kν we get zero, and, being eee
(a)
i spacelike and orthogonal to vvv and to kkk, we

get that

M−1
iε ≃ −

2
∑

i=1

e
(a)µ
i (~k)e

(a)ν
i (~k)

DR′
(a)(

~k)

1

k0 − k0(a) + iε
. (B.14)

Summing up the contributions of both the poles a = 1, 2, and taking into account the factor −2πi of the residua
theorem, we get the last row of (3.4).

B.1.3. The k0 = k0+k0 = k0+k0 = k0+ poles. These give the contributions to the free photon modes. Since we have a second order
pole, it is convenient to include the exponential factor in the polar part that is

e−ikkk·(xxx−yyy)











4π

(k2 + iε)2

(

ξ

4π
−

ω2 − ω2
0

ω2 − ω̄2

)

+
1

k2

4π −
g2χω2

0ω
2

ω2−ω2
0

g2χω2
0

ω2 − ω̄2

4π

k2 + iε



 kµkν

−
g2χω2

0ω

k2

4π −
g2χω2

0ω
2

ω2−ω2
0

kµvν + kνvµ

ω2 − ω̄2

4π

k2 + iε







. (B.15)
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The residuum is thus

1

2ω+k0+

e−ikkk+·(xxx−yyy)

1
4π −

g2χω2
0

ω2−ω2
0

(kµvν + kνvµ − kµkν) +
d

dk0





e−ikkk+·(xxx−yyy)

(k0 + |~k|)2



ξ −
1

1
4π −

g2χω2
0

ω2−ω2
0



 kµkν





k0=|~k|

=
1

2ω+k0+

e−ikkk+·(xxx−yyy)

1
4π −

g2χω2
0

ω2−ω2
0

(kµvν + kνvµ − kµkν)− i(x0 − y0)
e−ikkk+·(xxx−yyy)

4|~k|2



ξ −
1

1
4π −

g2χω2
0

ω2−ω2
0



 kµkν

−
e−ikkk+·(xxx−yyy)

4|~k|3



ξ −
1

1
4π −

g2χω2
0

ω2−ω2
0



 kµkν +
e−ikkk+·(xxx−yyy)

4|~k|2



ξ −
1

1
4π −

g2χω2
0

ω2−ω2
0



 (η0µkν+ + η0νkµ+)

+
e−ikkk+·(xxx−yyy)

4|~k|2

2ω+v
0g2χω2

0

(ω2
+ − ω0)2

kµkν
[

1
4π −

g2χω2
0

ω2−ω2
0

]2 . (B.16)

Apparently, this expression does not reproduce the first three rows of (3.4). However, it is easy to see that
these are reproduced integrating in the direction kµvµ in place of the direction k0. This can be done by taking

a boost such that vµ → (1,~0), integrating in the new k0 direction and then going back to the original frame.
This completes the proof of the first statement.

B.2. (3.5). We will prove that

G(µ+1)(ν+5)(xxx,yyy) =

∫

R4

d4kkk

(2π)4
M−1

iε (kkk)
1,2

e−ikkk·(xxx−yyy) =

∫

R4

d4kkk

(2π)4
Niε(kkk)e

−ikkk·(xxx−yyy). (B.17)

We need only to prove it for the inward propagation, that is when closing clockwise the path (when x0−y0 > 0).
There are three kinds of contributions to the residua.

B.2.1. The k0 = k0>k0 = k0>k0 = k0> pole. This gives the contribution to the b-mode. Looking at Niε, we see that the polar part
in k0> is

Niε ≃ −ig2v0
4πχω2

0

k2> − ω̄2

(

vµvν +
kµ>k

ν
>

k2>
−

ω̄

k2>
vµkν> −

kµ>v
ν

ω̄

)

1

k0 − k0> + iε
, (B.18)

which leads immediately to the second line of (3.5).

B.2.2. The k0 = k0(a)k0 = k0(a)k0 = k0(a) poles. These give the contributions to the transverse modes. Near the pole k0 = k0(a) the

matrix Niε is nearly

Niε ≃ −
igχω2

0

ω2
(a) − ω2

0

ω(a)

DR′
(a)(

~k)(k0 − k0(a) + iε)

[

ηµν +
4πg2χω2

0

ω2
(a) − ω2

0

(vµvν

+
kµ(a)k

ν
(a)

k2(a)
−

ω(a)

k2(a)
vµkν −

ω2
(a) − ω2

0

4πω(a)g2χω
2
0

kµvν

)]

, (B.19)

and using that

ω2
(a)

k2(a)
=

ω2
(a) − ω2

0

4πg2χω2
0

, (B.20)

we see that contracting with vν or kν we get zero. Since eee
(a)
i spacelike and orthogonal to vvv and to kkk, we get that

Niε ≃ igχω2
0

2
∑

i=1

e
(a)µ
i (~k)e

(a)ν
i (~k)

DR′
(a)(

~k)

ω(a)

ω2
(a) − ω2

0

1

k0 − k0(a) + iε
. (B.21)

Summing up the contributions of both the poles a = 1, 2, and applying the theorem of residues, we get the last
row of (3.5).
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B.2.3. The k0 = k0+k0 = k0+k0 = k0+ poles. These give the contributions to the free photon modes. We see that for k0 ≃ k0+

Niε ≃
i

gω+

4πg2χω2
0

ω2
+ − ω2

0

1

2|~k|
(kµkν − ω+v

µkν)
1

k0 − k0+ + iε
. (B.22)

This leads immediately to the first row of (3.5).

B.3. (3.6). We will prove that

G(µ+1)(9)(xxx,yyy) = −i

∫

R4

d4kkk

(2π)4
kµ

k2 + iε
e−ikkk·(xxx−yyy). (B.23)

We need only to prove it for the inward propagation, that is when closing clockwise the path (when x0−y0 > 0).
In this case there is just one contribution, which corresponds to the pole k0 = k0+ − iε. Here, the direct
computation gives the right result.

B.4. (3.7). We will prove that

G(µ+5)(ν+5)(xxx,yyy) =

∫

R4

d4kkk

(2π)4
M−1

iε (kkk)
2,2

e−ikkk·(xxx−yyy) =

∫

R4

d4kkk

(2π)4

(

Qµν
iε (kkk) +

χω2
0

ω2 − ω2
0 + iε

ηµν
)

e−ikkk·(xxx−yyy).(B.24)

We need only to prove it for the inward propagation, that is when closing clockwise the path (when x0−y0 > 0).
It is interesting to note that in this case we have three contribution, but the pole in k0+ is replaced by a pole in
ω = ω0. This contribution corresponds to the solution AAA = 000, B = 0, PPP ∝ vvv, which must be discarded because
of the condition vvv ·PPP = 0.

B.4.1. The k0 = k0>k0 = k0>k0 = k0> pole. In this case

Qiε ≃
χω2

0

2ω̄v0
1

k2> − ω̄2
(ω̄vµ − kµ>) (ω̄v

ν − kν>)
1

k0 − k0> + iε
, (B.25)

which, through the theorem of residues, leads to the first row of (3.7).

B.4.2. The k0 = k0(a)k0 = k0(a)k0 = k0(a) poles. Again, the polar part is in Qiε only, and, as in the previous subsections, it is

sufficient to check that kkk and vvv are in the kernel of the polar part of Qiε. But this is easily checked exactly in
the same way as for the previous subsections.

Thus, we are left with the expressions (3.8) and (3.9), which, however, are trivially verified. Then, the proof of
the proposition is complete.



16 F. BELGIORNO1,2, S.L. CACCIATORI3,4 , F. DALLA PIAZZA5, AND M. DORONZO3

References

[1] S. W. Hawking, Commun. Math. Phys. 43, 199 (1975) [Erratum-ibid. 46, 206 (1976)].
[2] W. G. Unruh, Phys. Rev. Lett. 46, 1351 (1981).
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[5] A. Luks, V. Perinová, Quantum Aspects of Light Propagation. Springer, Berlin (2009).
[6] J. J. Hopfield, Phys. Rev. 112, 1555 (1958).
[7] U.Fano, Phys. Rev. 103, 1202 (1956).
[8] C.Kittel, Quantum theory of solids. Wiley, New York (1987).
[9] A.S.Davydov, Theory of solids. Nauka, Moscow (1980).

[10] F. Belgiorno, S. L. Cacciatori and F. Dalla Piazza, Phys. Scr. 91, 015001 (2016).
[11] P.A.M. Dirac, Lectures on Quantum Mechanics. Belfer Graduate School of Science, Yeshiva University. New York, 1964.
[12] P.A.M. Dirac, Can. J. Math. 2, 129 (1950); ibid. 3, 1 (1951).
[13] K.Sundermeyer, Constrained Dynamics. Lecture Notes in Physics 169. Springer, Berlin (1982).
[14] D.M.Gitman and I.V.Tyutin, Quantization of Fields with Constraints. Springer Series in Nuclear and Particle Physics, Springer,

Berlin (1990).
[15] M.Henneaux and C.Teitelboim, Quantization of Gauge Systems. Princeton University Press, Princeton (1994).
[16] Heinz J. Rothe and Klaus D. Rothe, Classical and Quantum Dynamics of Constrained Hamiltonian Systems. World Scientific,

Singapore (2010).
[17] F. Belgiorno, S. L. Cacciatori and F. Dalla Piazza, Eur. Phys. J. D 68 (2014) 134.
[18] E. Rubino et al., New J. Phys. 13 (2011) 085005.
[19] M. Petev, N. Westerberg, D. Moss, E. Rubino, C. Rimoldi, S. L. Cacciatori, F. Belgiorno and D. Faccio, Phys. Rev. Lett. 111,

043902 (2013).
[20] S.Finazzi and I.Carusotto, Phys. Rev. A87, 023803 (2013).
[21] S. Finazzi and I. Carusotto, Phys. Rev. A 89, 053807 (2014).
[22] F. Belgiorno, S. L. Cacciatori and F. Dalla Piazza, Phys. Rev. D 91 (2015) 12, 124063.
[23] F. Belgiorno, S. L. Cacciatori, F. Dalla Piazza and M. Doronzo, Exact quantization of the relativistic Hopfield model,

arXiv:1512.08739 [math-ph].
[24] D. J. Toms, Phys. Rev. D 92 (2015) 10, 105026.
[25] L.D. Faddeev, Theor. Math. Phys. 1 (1970) 1-13.

[26] P. Senjanovic, Annals of Physics (NY) 100, 227 (1976).
[27] L.D. Faddeev, R. Jackiw, Phys. Rev. Lett. 60, 1692 (1988).
[28] R. Jackiw, (Constrained) Quantization Without Tears, arXiv:hep-th/930607v1 (1993).
[29] J. Barcelos-Neto and C. Wotzasek, Mod. Phys. Lett. A 7, 1737 (1992).
[30] J. Barcelos-Neto and C. Wotzasek, Int. J. Mod. Phys. A 7, 4981 (1992).
[31] J. A. Garcia and J. M. Pons, Int. J. Mod. Phys. A 12, 451 (1997)
[32] L. Liao, Y.C. Huang, Phys. Rev. D 75, 025025 (2007).
[33] A.Bechler, J. Mod. Opt. 46 901 (1999).
[34] A.Bechler, J. Phys. A: Math. Gen. 39 13553 (2006).

1Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo 32, IT-20133 Milano, Italy
2INdAM-GNFM
3Department of Science and High Technology, Università dell’Insubria, Via Valleggio 11, IT-22100 Como, Italy
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