225 research outputs found

    Cholera epidemics in 2010: respective roles of environment, strain changes, and human-driven dissemination

    Get PDF
    AbstractThe cholera burden has grown strikingly during the past 4 years, and has spread to countries previously spared by this disease. The current spread has proved especially violent, as illustrated by the recent deadly epidemics around the Lake Chad Basin, in East Africa, and in Haiti. This onset of severe cholera epidemics is part of the overall dynamic of the current seventh cholera pandemic, composed of successive epidemic waves. The current wave is attributable to new atypical El Tor strains, which spread from the Bay of Bengal to Papua in the east, Africa, and the Caribbean Sea in the west, and caused hundreds of thousands of cases and thousands of deaths during each of the last 4 years. The particular severity of the resulting epidemics is partially attributable to the specific characteristics of the atypical El Tor strain involved. Besides the abilty of El Tor to spread easily, this strain is associated with more severe clinical findings, because of elevated levels of toxin secretion resulting from a genetic content originating from classical strains. Conversely, recent studies of these deadly outbreaks raised hope by illustrating their relationship with human-borne dissemination rather than with the resurgence of environmental strains. As human-borne dissemination can be more easily targeted than ubiquitous environmental contamination, accurate and comprehensive epidemiological studies are essential to better understand the dynamics of the disease and to optimize future cholera responses

    The genomic Echinococcus microsatellite EmsB sequences: from a molecular marker to the epidemiological tool

    Get PDF
    In the field of molecular and epidemiological parasitology, characterization of fast evolving genetic markers appears as an important challenge to consider the diversity and genetic structure of parasites. The study of respective populations can help us to understand their adaptive strategies to survive and perpetuate the species within different host populations, all trying to resist infection. In the past, the relative monomorphic features of Echinococcus multilocularis, the causative agent of alveolar echinococcosis and a severe human parasitic disease, did not stimulate studies dealing with the genetic variability of Echinococcus species or respective populations. A recently developed, characterized and validated original multilocus microsatellite, named EmsB, tandemly repeated in the genome, offered an additional opportunity for this line of investigation. We have compiled in this review new insights brought by this molecular tracker on the transmission activity of Echinococcus among different hosts and at different geographical scale

    Frequency of Drug Resistance Gene Amplification in Clinical Leishmania Strains

    Get PDF
    Experimental studies about Leishmania resistance to metal and antifolates have pointed out that gene amplification is one of the main mechanisms of drug detoxification. Amplified genes code for adenosine triphosphate-dependent transporters (multidrug resistance and P-glycoproteins P), enzymes involved in trypanothione pathway, particularly gamma glutamyl cysteine synthase, and others involved in folates metabolism, such as dihydrofolate reductase and pterine reductase. The aim of this study was to detect and quantify the amplification of these genes in clinical strains of visceral leishmaniasis agents: Leishmania infantum, L. donovani, and L. archibaldi. Relative quantification experiments by means of real-time polymerase chain reaction showed that multidrug resistance gene amplification is the more frequent event. For P-glycoproteins P and dihydrofolate reductase genes, level of amplification was comparable to the level observed after in vitro selection of resistant clones. Gene amplification is therefore a common phenomenon in wild strains concurring to Leishmania genomic plasticity. This finding, which corroborates results of experimental studies, supports a better understanding of metal resistance selection and spreading in endemic areas

    Identification des dermatophytes par spectrométrie de masse MALDI-TOF

    Get PDF
    Introduction L’identification des dermatophytes par les méthodes microbiologiques conventionnelles est souvent longue et fastidieuse. La technique de spectrométrie de masse et sa variante MALDI-TOF (Matrix Assisted Laser Desorption Ionisation-Time of Flight) est un nouvel outil utilisé pour l’identification des bactéries et des levures dans les laboratoires d’analyses médicales. Nous avons récemment développé une méthode standardisée pour l’identification en routine des champignons filamenteux à partir de culture en milieu solide. L’objectif de cette étude est d’étendre cette méthode standardisée à l’identification des dermatophytes dans l’activité de routine du laboratoire. Matériel et méthode Une banque de référence contenant les spectres de masse de 44 souches parfaitement caractérisées correspondants à 13 espèces de dermatophytes a été générée sur un UltraFlex (BruckerDaltonics, Allemagne) couplé au logiciel MaldiBiotyper v2.1. Par la suite, 133 souches isolées de prélèvements cliniques ont été identifiées en comparant leur spectre à ceux inclus dans la banque de référence : l’identification d’espèce a été retenue si le Log Score (LS) obtenu était supérieur ou égal à 1,7. Enfin, l’identification par MALDI-TOF a été considérée comme correcte en cas de concordance avec l’identification morphologique ou moléculaire des isolats cliniques. Résultats L’identification par spectrométrie de masse(SM) a été correcte pour 130 (97,8 %) des isolats. Pour 2 isolats identifiés conventionnellement comme Microsporum canis, l’identification par SM n’a pas pu générer de spectre avec un LS valide. Pour un isolat correspondant à Microsporum audouinii, la SM a généré une mauvaise identification. Tous les isolats ont pu être identifiés après seulement 3 à 6 jours de culture avant l’apparition des caractères morphologiques conventionnels d’identification. Conclusion Le protocole de SM utilisé pour l’identification des champignons filamenteux au laboratoire est applicable aux dermatophytes. Une identification d’espèce peut être obtenue en 3 à 6 jours alors qu’une identification conventionnelle qui nécessite notamment des milieux de cultures complémentaires demande 2 à 3 semaines

    Genetic diversity and population structure of Leishmania infantum from Southeastern France : evaluation using Multi-Locus Microsatellite Typing

    Get PDF
    In the south of France, Leishmania infantum is responsible for numerous cases of canine leishmaniasis (CanL), sporadic cases of human visceral leishmaniasis (VL) and rare cases of cutaneous and muco-cutaneous leishmaniasis (CL and MCL, respectively). Several endemic areas have been clearly identified in the south of France including the Pyrenees-Orientales, Cevennes (CE), Provence (P), Alpes-Maritimes (AM) and Corsica (CO). Within these endemic areas, the two cities of Nice (AM) and Marseille (P), which are located 150 km apart, and their surroundings, concentrate the greatest number of French autochthonous leishmaniasis cases. In this study, 270 L. infantum isolates from an extended time period (1978-2011) from four endemic areas, AM, P, CE and CO, were assessed using Multi-Locus Microsatellite Typing (MLMT). MLMT revealed a total of 121 different genotypes with 91 unique genotypes and 30 repeated genotypes. Substantial genetic diversity was found with a strong genetic differentiation between the Leishmania populations from AM and P. However, exchanges were observed between these two endemic areas in which it seems that strains spread from AM to P. The genetic differentiations in these areas suggest strong epidemiological structuring. A model-based analysis using STRUCTURE revealed two main populations: population A (consisting of samples primarily from the P and AM endemic areas with MON-1 and non-MON-1 strains) and population B consisting of only MON-1 strains essentially from the AM endemic area. For four patients, we observed several isolates from different biological samples which provided insight into disease relapse and re-infection. These findings shed light on the transmission dynamics of parasites in humans. However, further data are required to confirm this hypothesis based on a limited sample set. This study represents the most extensive population analysis of L. infantum strains using MLMT conducted in France

    Human ectoparasites and the spread of plague in Europe during the Second Pandemic

    Get PDF
    Plague, caused by the bacterium Yersinia pestis, can spread through human populations by multiple transmission pathways. Today, most human plague cases are bubonic, caused by spillover of infected fleas from rodent epizootics, or pneumonic, caused by inhalation of infectious droplets. However, little is known about the historical spread of plague in Europe during the Second Pandemic (14-19th centuries), including the Black Death, which led to high mortality and recurrent epidemics for hundreds of years. Several studies have suggested that human ectoparasite vectors, such as human fleas (Pulex irritans) or body lice (Pediculus humanus humanus), caused the rapidly spreading epidemics. Here, we describe a compartmental model for plague transmission by a human ectoparasite vector. Using Bayesian inference, we found that this model fits mortality curves from nine outbreaks in Europe better than models for pneumonic or rodent transmission. Our results support that human ectoparasites were primary vectors for plague during the Second Pandemic, including the Black Death (1346-1353), ultimately challenging the assumption that plague in Europe was predominantly spread by rats

    Airborne cultivable microflora and microbial transfer in farm buildings and rural dwellings

    Get PDF
    Exposure to environments rich in microorganisms such as farms has been shown to protect against the development of childhood asthma and allergies. However, it remains unclear where, and how, farm and other rural children are exposed to microbes. Furthermore, the composition of the microbial flora is poorly characterised. We tested the hypothesis that farm children are exposed indoors to substantial levels of viable microbes originating from animal sheds and barns. We also expected that environmental microbial flora on farms and in farm homes would be more complex than in the homes of rural control children

    Epidemiologic Relationship between Toscana Virus Infection and Leishmania infantum Due to Common Exposure to Phlebotomus perniciosus Sandfly Vector

    Get PDF
    Sand flies are recognised vectors of parasites in the genus Leishmania and a number of arthropod-borne viruses, in particular viruses within the genus Phlebovirus, family Bunyaviridae. In southern France, Toscana phlebovirus (TOSV) is recognized as a prominent cause of summer meningitis. Since Leishmania and TOSV have a common vector (Phlebotomus perniciosus), an epidemiologic link has been assumed for a long time. However, there is no scientific evidence of such a link between human leishmaniosis and phleboviral infections. To identify a possible link, we investigated the presence and distribution of antibodies against these two microorganisms (i) in individuals and (ii) at a spatial level in the city of Marseille (south-eastern France). Five hundred sera were selected randomly in the biobank of the Department of Parasitology of the Public Hospitals of Marseille. All sera were previously tested for IgG against Leishmania by Western Blotting, and TOSV IgG were detected by indirect immunofluorescence. The seropositivity rates were 21.4% for TOSV and 28% for Leishmania. Statistical analysis demonstrated that seropositivity for one pathogen was significantly associated with seropositivity to the other pathogen. This result provided the first robust evidence for the existence of an epidemiological relationship between Leishmania infantum and TOSV. Addresses of tested patients were geolocalized and integrated into Geographical Information System software, in order to test spatial relationship between the two pathogens. Spatial analysis did not allow to identify (i) specific patterns for the spatial distribution of positive serological results for TOSV or Leishmania, and (ii) a spatial relationship between Leishmania and TOSV positive serological results. This may reflect the fact that the sample studied was not powerful enough to demonstrate either a spatial clustering or co-location, i.e. that the actual risk exposure area is smaller than the mean of distance between patients in our study (245 m)

    Clinical factors associated with a Candida albicans Germ Tube Antibody positive test in Intensive Care Unit patients

    Get PDF
    Background: Poor outcomes of invasive candidiasis (IC) are associated with the difficulty in establishing the microbiological diagnosis at an early stage. New scores and laboratory tests have been developed in order to make an early therapeutic intervention in an attempt to reduce the high mortality associated with invasive fungal infections. Candida albicans IFA IgG has been recently commercialized for germ tube antibody detection (CAGTA). This test provides a rapid and simple diagnosis of IC (84.4% sensitivity and 94.7% specificity). The aim of this study is to identify the patients who could be benefited by the use of CAGTA test in critical care setting. Methods: A prospective, cohort, observational multicentre study was carried out in six medical/surgical Intensive care units (ICU) of tertiary-care Spanish hospitals. Candida albicans Germ Tube Antibody test was performed twice a week if predetermined risk factors were present, and serologically demonstrated candidiasis was considered if the testing serum dilution was >= 1: 160 in at least one sample and no other microbiological evidence of invasive candidiasis was found. Results: Fifty-three critically ill non-neutropenic patients (37.7% post surgery) were included. Twenty-two patients (41.5%) had CAGTA-positive results, none of them with positive blood culture for Candida. Neither corrected colonization index nor antifungal treatment had influence on CAGTA results. This finding could corroborate that the CAGTA may be an important biomarker to distinguish between colonization and infection in these patients. The presence of acute renal failure at the beginning of the study was more frequent in CAGTA-negative patients. Previous surgery was statistically more frequent in CAGTA-positive patients. Conclusions: This study identified previous surgery as the principal clinical factor associated with CAGTA-positive results and emphasises the utility of this promising technique, which was not influenced by high Candida colonization or antifungal treatment. Our results suggest that detection of CAGTA may be important for the diagnosis of invasive candidiasis in surgical patients admitted in ICU.This study has been supported by a Pfizer research gran

    Diagnosis of invasive candidiasis in the ICU

    Get PDF
    Invasive candidiasis ranges from 5 to 10 cases per 1,000 ICU admissions and represents 5% to 10% of all ICU-acquired infections, with an overall mortality comparable to that of severe sepsis/septic shock. A large majority of them are due to Candida albicans, but the proportion of strains with decreased sensitivity or resistance to fluconazole is increasingly reported. A high proportion of ICU patients become colonized, but only 5% to 30% of them develop an invasive infection. Progressive colonization and major abdominal surgery are common risk factors, but invasive candidiasis is difficult to predict and early diagnosis remains a major challenge. Indeed, blood cultures are positive in a minority of cases and often late in the course of infection. New nonculture-based laboratory techniques may contribute to early diagnosis and management of invasive candidiasis. Both serologic (mannan, antimannan, and betaglucan) and molecular (Candida-specific PCR in blood and serum) have been applied as serial screening procedures in high-risk patients. However, although reasonably sensitive and specific, these techniques are largely investigational and their clinical usefulness remains to be established. Identification of patients susceptible to benefit from empirical antifungal treatment remains challenging, but it is mandatory to avoid antifungal overuse in critically ill patients. Growing evidence suggests that monitoring the dynamic of Candida colonization in surgical patients and prediction rules based on combined risk factors may be used to identify ICU patients at high risk of invasive candidiasis susceptible to benefit from prophylaxis or preemptive antifungal treatment
    corecore