694 research outputs found

    Niche partitioning in a sympatric cryptic species complex

    Get PDF
    Competition theory states that multiple species should not be able to occupy the same niche indefinitely. Morphologically, similar species are expected to be ecologically alike and exhibit little niche differentiation, which makes it difficult to explain the co-occurrence of cryptic species. Here, we investigated interspeci- fic niche differentiation within a complex of cryptic bumblebee species that co-occur extensively in the United Kingdom. We compared the interspecific variation along different niche dimensions, to determine how they partition a niche to avoid competitive exclusion. We studied the species B. cryptarum, B. lucorum, and B. magnus at a single location in the northwest of Scotland throughout the flight season. Using mitochondrial DNA for species identifica- tion, we investigated differences in phenology, response to weather variables and forage use. We also estimated niche region and niche overlap between different castes of the three species. Our results show varying levels of niche partitioning between the bumblebee species along three niche dimensions. The species had contrasting phenologies: The phenology of B. magnus was delayed relative to the other two species, while B. cryptarum had a relatively extended phenology, with workers and males more common than B. lucorum early and late in the season. We found divergent thermal specialisation: In contrast to B. cryptarum and B. magnus, B. lucorum worker activity was skewed toward warmer, sunnier conditions, leading to interspecific temporal variation. Further- more, the three species differentially exploited the available forage plants: In particular, unlike the other two species, B. magnus fed predominantly on species of heather. The results suggest that ecological divergence in different niche dimensions and spatio-temporal heterogeneity in the environment may contribute to the persistence of cryptic species in sympatry. Furthermore, our study suggests that cryptic species provide distinct and unique ecosystem services, demonstrating that morphological similarity does not necessarily equate to ecological equivalence

    Sea temperature effects on depth use and habitat selection in a marine fish community

    Get PDF
    Understanding the responses of aquatic animals to temperature variability is essential to predict impacts of future climate change and to inform conservation and management. Most ectotherms such as fish are expected to adjust their behaviour to avoid extreme temperatures and minimize acute changes in body temperature. In coastal Skagerrak, Norway, sea surface temperature (SST) ranges seasonally from 0 to over 20°C, representing a challenge to the fish community which includes cold-, cool- and warm-water affinity species.publishedVersio

    A biogeographic reversal in sexual size dimorphism along a continental temperature gradient

    Get PDF
    © 2018 The Authors The magnitude and direction of sexual size dimorphism (SSD) varies greatly across the animal kingdom, reflecting differential selection pressures on the reproductive and/or ecological roles of males and females. If the selection pressures and constraints imposed on body size change along environmental gradients, then SSD will vary geographically in a predictable way. Here, we uncover a biogeographical reversal in SSD of lizards from Central and North America: in warm, low latitude environments, males are larger than females, but at colder, high latitudes, females are larger than males. Comparisons to expectations under a Brownian motion model of SSD evolution indicate that this pattern reflects differences in the evolutionary rates and/or trajectories of sex-specific body sizes. The SSD gradient we found is strongly related to mean annual temperature, but is independent of species richness and body size differences among species within grid cells, suggesting that the biogeography of SSD reflects gradients in sexual and/or fecundity selection, rather than intersexual niche divergence to minimize intraspecific competition. We demonstrate that the SSD gradient is driven by stronger variation in male size than in female size and is independent of clutch mass. This suggests that gradients in sexual selection and male–male competition, rather than fecundity selection to maximize reproductive output by females in seasonal environments, are predominantly responsible for the gradient

    Selection of Food Patches by Sympatric Herbivores in Response to Concealment and Distance from a Refuge

    Get PDF
    Small herbivores face risks of predation while foraging and are often forced to trade off food quality for safety. Life history, behaviour, and habitat of predator and prey can influence these trade-offs. We compared how two sympatric rabbits (pygmy rabbit, Brachylagus idahoensis; mountain cottontail, Sylvilagus nuttallii) that differ in size, use of burrows, and habitat specialization in the sagebrush-steppe of western North America respond to amount and orientation of concealment cover and proximity to burrow refuges when selecting food patches. We predicted that both rabbit species would prefer food patches that offered greater concealment and food patches that were closer to burrow refuges. However, because pygmy rabbits are small, obligate burrowers that are restricted to sagebrush habitats, we predicted that they would show stronger preferences for greater cover, orientation of concealment, and patches closer to burrow refuges. We offered two food patches to individuals of each species during three experiments that either varied in the amount of concealment cover, orientation of concealment cover, or distance from a burrow refuge. Both species preferred food patches that offered greater concealment, but pygmy rabbits generally preferred terrestrial and mountain cottontails preferred aerial concealment. Only pygmy rabbits preferred food patches closer to their burrow refuge. Different responses to concealment and proximity to burrow refuges by the two species likely reflect differences in perceived predation risks. Because terrestrial predators are able to dig for prey in burrows, animals like pygmy rabbits that rely on burrow refuges might select food patches based more on terrestrial concealment. In contrast, larger habitat generalists that do not rely on burrow refuges, like mountain cottontails, might trade off terrestrial concealment for visibility to detect approaching terrestrial predators. This study suggests that body size and evolutionary adaptations for using habitat, even in closely related species, might influence anti-predator behaviors in prey species

    Evolving thermal thresholds explain the distribution of temperature sex reversal in an Australian dragon lizard

    Get PDF
    Aim: Species with temperature-dependent sex determination (TSD) are particularly vulnerable to climate change because a resultant skew in population sex ratio can have severe demographic consequences and increase vulnerability to local extinction. The Australian central bearded dragon (Pogona vitticeps) has a thermosensitive ZZ male/ZW female system of genetic sex determination (GSD). High incubation temperatures cause reversal of the ZZ genotype to a viable female phenotype. Nest temperatures in the wild are predicted to vary on a scale likely to produce heterogeneity in the occurrence of sex reversal, and so we predict that sex reversal will correlate positively with inferred incubation conditions. Location: Mainland Australia. Methods: Wild-caught specimens of P. vitticeps vouchered in museum collections and collected during targeted field trips were genotypically and phenotypically sexed to determine the distribution of sex reversal across the species range. To determine whether environmental conditions or genetic structure can explain this distribution, we infer the incubation conditions experienced by each individual and apply a multi-model inference approach to determine which conditions associate with sex reversal. Further, we conduct reduced representation sequencing on a subset of specimens to characterize the population structure of this broadly distributed species. Results: Here we show that sex reversal in this widespread Australian dragon lizard is spatially restricted to the eastern part of the species range. Neither climatic variables during the inferred incubation period nor geographic population genetic structure explain this disjunct distribution of sex reversal. The main source of genetic variation arose from isolation by distance across the species range. Main conclusions: We propose that local genetic adaptation in the temperature threshold for sex reversal can counteract the sex-reversing influence of high incubation temperatures in P. vitticeps. Our study demonstrates that complex evolutionary processes need to be incorporated into modelling biological responses to future climate scenarios

    Global dynamics of three species omnivory models with Lotka-Volterra interaction

    Get PDF
    [[abstract]]In this work, we consider the community of three species food web model with Lotka-Volterra type predator-prey interaction. In the absence of other species, each species follows the traditional logistical growth model and the top predator is an omnivore which is defined as feeding on the other two species. It can be seen as a model with one basal resource and two generalist predators, and pairwise interactions of all species are predator-prey type. It is well known that the omnivory module blends the attributes of several well-studied community modules, such as food chains (food chain models), exploitative competition (two predators-one prey models), and apparent competition (one predator-two preys models). With a mild biological restriction, we completely classify all parameters. All local dynamics and most parts of global dynamics are established corresponding to the classification. Moreover, the whole system is uniformly persistent when the unique coexistence appears. Finally, we conclude by discussing the strategy of inferior species to survive and the mechanism of uniform persistence for the three species ecosystem.[[notice]]補正完

    Human biogeography and faunal exploitation in Diamante River basin, central western Argentina

    Get PDF
    A biogeographic model used to describe human peopling of southern Mendoza, central western Argentina, proposed an intensification process activated by an increase in population growth rate during the Late Holocene. During this process, high-ranked resources at the surroundings of residential camps were depleted, and hunter–gatherers broadened their diet by incorporating a larger number of low-ranked prey and domesticated plant resources. In this paper, we evaluate an alternative hypothesis, focusing on zooarchaeological data from the Diamante River basin. The results show that faunal resource intensification does not appear to have occurred in the Diamante River basin during the Late Holocene. Faunal consumption in Diamante River basin mainly reflects the local fauna in each ecological zone. The data do not show a lack of higher ranked resources. We suggest it is more likely that the demographic increase was not significant enough to cause an impact on the faunal resources. The archaeological evidence should be improved and analysed in smaller scales to continue with the intensification debate.Fil: Otaola, Clara. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; ArgentinaFil: Giardina, Miguel Angel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; ArgentinaFil: Franchetti, Fernando Ricardo. University of Pittsburgh at Johnstown; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Specialization among amphipods: the invasiveGammarus tigrinushas narrower niche space compared to native gammarids

    Get PDF
    Human-mediated invasions of nonindigenous species are modifying global biodiversity. Despite significant interest in the topic, niche separation and specialization of invasive and closely related native sympatric species are not well understood. It is expected that combined use of various methods may reveal different aspects of niche space and provide stronger evidence for niche partitioning as compared to a single method. We applied the species marginality index (OMI) and species distribution modeling (SDM) in the northern Baltic Proper to determine (1) if environmental niche spaces at habitat scale differ between taxonomically and functionally closely related invasive and native gammarid species, and (2) whether the observed pattern relates to the species distribution overlap. Both methods agreed in notably narrower and more segregated realized niche of invasive Gammarus tigrinus compared to the studied native gammarids. Among native species, the distribution of G. zaddachi overlapped the most with G. tigrinus. Our results confirm that widespread colonization does not require a wide niche of the colonizer, but may rather be a function of other biological traits and/or the saturation of the recipient ecosystem. The niche divergence and wider environmental niche space of native species are likely to safeguard their existence in habitats less suitable for G. tigrinus
    corecore