138 research outputs found

    Emerging pleiotropic mechanisms underlying aluminum resistance and phosphorus acquisition on acidic soils.

    Get PDF
    Aluminum (Al) toxicity on acidic soils significantly damages plant roots and inhibits root growth. Hence, crops intoxicated by Al become more sensitive to drought stress and mineral nutrient deficiencies, particularly phosphorus (P) deficiency, which is highly unavailable on tropical soils. Advances in our understanding of the physiological and genetic mechanisms that govern plant Al resistance have led to the identification of Al resistance genes, both in model systems and in crop species. It has long been known that Al resistance has a beneficial effect on crop adaptation to acidic soils. This positive effect happens because the root systems of Al resistant plants show better development in the presence of soil ionic Al3C and are, consequently, more efficient in absorbing sub-soil water and mineral nutrients. This effect of Al resistance on crop production, by itself, warrants intensified efforts to develop and implement, on a breeding scale, modern selection strategies to profit from the knowledge of the molecular determinants of plant Al resistance. Recent studies now suggest that Al resistance can exert pleiotropic effects on P acquisition, potentially expanding the role of Al resistance on crop adaptation to acidic soils. This appears to occur via both organic acid (OA)- and non-OA transporters governing a joint, iron-dependent interplay between Al resistance and enhanced P uptake, via changes in root system architecture. Current research suggests this interplay to be part of a P stress response, suggesting that this mechanism could have evolved in crop species to improve adaptation to acidic soils. Should this pleiotropism prove functional in crop species grown on acidic soils, molecular breeding based on Al resistance genes may have a much broader impact on crop performance than previously anticipated. To explore this possibility, here we review the components of this putative effect of Al resistance genes on P stress responses and P nutrition to provide the foundation necessary to discuss the recent evidence suggesting pleiotropy as a genetic linkage between Al resistance and P efficiency. We conclude by exploring what may be needed to enhance the utilization of Al resistance genes to improve crop production on acidic soils.Article 1420

    A Versatile, Portable Intravital Microscopy Platform for Studying Beta-cell Biology In Vivo

    Get PDF
    The pancreatic islet is a complex micro-organ containing numerous cell types, including endocrine, immune, and endothelial cells. The communication of these systems is lost upon isolation of the islets, and therefore the pathogenesis of diabetes can only be fully understood by studying this organized, multicellular environment in vivo. We have developed several adaptable tools to create a versatile platform to interrogate β-cell function in vivo. Specifically, we developed β-cell-selective virally-encoded fluorescent protein biosensors that can be rapidly and easily introduced into any mouse. We then coupled the use of these biosensors with intravital microscopy, a powerful tool that can be used to collect cellular and subcellular data from living tissues. Together, these approaches allowed the observation of in vivo β-cell-specific ROS dynamics using the Grx1-roGFP2 biosensor and calcium signaling using the GcAMP6s biosensor. Next, we utilized abdominal imaging windows (AIW) to extend our in vivo observations beyond single-point terminal measurements to collect longitudinal physiological and biosensor data through repeated imaging of the same mice over time. This platform represents a significant advancement in our ability to study β-cell structure and signaling in vivo, and its portability for use in virtually any mouse model will enable meaningful studies of β-cell physiology in the endogenous islet niche

    Evaluation of aluminium tolerance in grapevine rootstocks

    Get PDF
    Aluminum (Al) toxicity is a major worldwide agricultural problem. At low pH, Al speciates into the soluble and phyto-toxic form Al3+, inhibiting the root growth and affecting plant development. In Brazil, agriculture in acidic soils with elevated concentration of Al has significantly increased in the last decades. Therefore, in order to achieve efficient agriculture practices, the selection of plant cultivars with improved Al resistance has become crucial in this type of soils. In this work we have evaluated the Al resistance of six genotypes of grapevine rootstocks. The grapevine hardwood cuttings were grown in nutrient solution in the absence and presence of 250 and 500 μM Al at pH 4.2. The phenotypic indexes of relative root growth, fresh and dry root weight, root area, hematoxylin staining profile, and Al content were evaluated for all six genotypes. These phenotypic indexes allowed us to identify the 'Kober 5BB', 'Gravesac', 'Paulsen 1103', and 'IAC 766' grapevine rootstocks genotypes as the ones with the highest resistance to Al. Likewise, 'IAC 572' and 'R110 genotypes were the most Al-sensitive cultivars. We evaluated the root organic acid exudation profile in the most Al-resistant ('Kober 5BB') and most Al-sensitive ('R110') in plantlets cultivated in vitro in the absence and presence of 100, 200, and 400 μM of Al. Among several compounds detected, citrate was the only organic acid related to the Al resistance phenotype observed in the 'Kober 5BB' genotype. The high constitutive citrate exudation observed in 'Kober 5BB' strongly suggests that exudation of this particular organic acid may impart Al-resistance/amelioration in grapevine.

    Effect of Acid Treatment on the Physicochemical Characteristics and Sorption Capacity of a Natural Zeolite

    Get PDF
    Mining is a very important industry for the development of emerging economies; however, it generates a large number of environmental externalities such as acid mine drainages; these have acid pH values and high heavy metal content. Although there are several methods for the elimination of metals in different solutions, they require a large economic investment. Recently, the use of adsorbent materials for the removal of heavy metals in acid drains such as agricultural by-products and natural zeolites has been developed as a cheaper alternative. In spite of the environmental benefits of using natural zeolites as adsorbent, one of the disadvantages is dealumination, which to a great extent could depend on the geological origin of the mineral that shapes some of its characteristics. This study characterized chemical and physical properties of natural and modified zeolites using various techniques, such as X-ray diffraction (XRD), N2 adsorption- desorption, inductively coupled plasma − optical emission spectroscopy (ICP-OES), and SEM-EDS to determine the effect of an acid treatment on the physical and chemical characteristics of a natural zeolite, correlating these with their sorption capacity. When giving acid treatment to a zeolite there are no significant changes in the crystal structure, the Si/Al ratio indicates a dealumination of the structure but with minimal changes, the surface area and density of the micropores increased considerably. A significant increase in the capacity of copper adsorption was registered. According to XRD, no significant changes occur to the structures. Keywords: Dealumination; aluminosilicates; AMD; acid treatment; metal removal. DOI: 10.7176/JEES/10-9-05 Publication date:September 30th 202

    Effectiveness of alternative therapies for the management of lumbar disc disease: a descriptive research

    Get PDF
    BACKGROUND: Low back pain due to discopathy has become one of the most expensive and highest impact problems of global public health at present. AIM: To evaluate the effectiveness of alternative therapies (AT) and related factors in lumbar disk disease (LDD). METHODS: Information was collected by using a retrospective descriptive design from medical records of patients treated from January to December 2013 with LDD who were attended in a clinic specialized in AT. Sociodemographic and clinical variables included clinical diagnostic time, Visual Analog Scale at admission (V.A.S.) and post-treatment pain (0-100 points) were identifi ed. General and specifi c infl uence of the AT was measured. RESULTS: 453 medical records were identifi ed, at admission V.A.S. was 8.2 (CI95%, 7,9 to 8,3) and showed pain relief (scale 0-100) of 54,5 points (CI95%, 52.2 to 56.8). In overall, 13 types of ATs were implemented with LDD patients. The median of pain relief (p25-p75) in the general population was 60 (40-70); 8 of 13 interventions provided an estimated median of pain relief lower than the one evidenced in the general population . CONCLUSION: The AT treatment in our study showed a reduction in pain of 50-60 points and an absolute reduction of 35 points after two months of treatment, which remained over 6 or more months of follow-up. Our results suggest that the use of AT has signifi cant effect on chronic pain in patients with LDD with no response to conventional treatmen

    Theory of Functional Connections and Nelder-Mead optimization methods applied in satellite characterization

    Full text link
    The growing population of man-made objects with the build up of mega-constellations not only increases the potential danger to all space vehicles and in-space infrastructures (including space observatories), but above all poses a serious threat to astronomy and dark skies. Monitoring of this population requires precise satellite characterization, which is is a challenging task that involves analyzing observational data such as position, velocity, and light curves using optimization methods. In this study, we propose and analyze the application of two optimization procedures to determine the parameters associated with the dynamics of a satellite: one based on the Theory of Functional Connections (TFC) and another one based on the Nelder-Mead heuristic optimization algorithm. The TFC performs linear functional interpolation to embed the constraints of the problem into a functional. In this paper, we propose to use this functional to analytically embed the observational data of a satellite into its equations of dynamics. After that, any solution will always satisfy the observational data. The second procedure proposed in this research takes advantage of the Nealder-Mead algorithm, that does not require the gradient of the objective function, as alternative solution. The accuracy, efficiency, and dependency on the initial guess of each method is investigated, analyzed, and compared for several dynamical models. These methods can be used to obtain the physical parameters of a satellite from available observational data and for space debris characterization contributing to follow-up monitoring activities in space and astronomical observatories.Comment: Submitted to Acta Astronautic

    Association and Linkage Analysis of Aluminum Tolerance Genes in Maize

    Get PDF
    Aluminum (Al) toxicity is a major worldwide constraint to crop productivity on acidic soils. Al becomes soluble at low pH, inhibiting root growth and severely reducing yields. Maize is an important staple food and commodity crop in acidic soil regions, especially in South America and Africa where these soils are very common. Al exclusion and intracellular tolerance have been suggested as two important mechanisms for Al tolerance in maize, but little is known about the underlying genetics. linkage populations with approximately 200 individuals each were used to study genetic variation in this complex trait. Al tolerance was measured as net root growth in nutrient solution under Al stress, which exhibited a wide range of variation between lines. Comparative and physiological genomics-based approaches were used to select 21 candidate genes for evaluation by association analysis.). These four candidate genes are high priority subjects for follow-up biochemical and physiological studies on the mechanisms of Al tolerance in maize. Immediately, elite haplotype-specific molecular markers can be developed for these four genes and used for efficient marker-assisted selection of superior alleles in Al tolerance maize breeding programs

    <i>Delftia</i> sp LCW, a strain isolated from a constructed wetland shows novel properties for dimethylphenol isomers degradation

    Get PDF
    BACKGROUND: Dimethylphenols (DMP) are toxic compounds with high environmental mobility in water and one of the main constituents of effluents from petro- and carbochemical industry. Over the last few decades, the use of constructed wetlands (CW) has been extended from domestic to industrial wastewater treatments, including petro-carbochemical effluents. In these systems, the main role during the transformation and mineralization of organic pollutants is played by microorganisms. Therefore, understanding the bacterial degradation processes of isolated strains from CWs is an important approach to further improvements of biodegradation processes in these treatment systems. RESULTS: In this study, bacterial isolation from a pilot scale constructed wetland fed with phenols led to the identification of Delftia sp. LCW as a DMP degrading strain. The strain was able to use the o-xylenols 3,4-DMP and 2,3-DMP as sole carbon and energy sources. In addition, 3,4-DMP provided as a co-substrate had an effect on the transformation of other four DMP isomers. Based on the detection of the genes, proteins, and the inferred phylogenetic relationships of the detected genes with other reported functional proteins, we found that the phenol hydroxylase of Delftia sp. LCW is induced by 3,4-DMP and it is responsible for the first oxidation of the aromatic ring of 3,4-, 2,3-, 2,4-, 2,5- and 3,5-DMP. The enzyme may also catalyze both monooxygenation reactions during the degradation of benzene. Proteome data led to the identification of catechol meta cleavage pathway enzymes during the growth on ortho DMP, and validated that cleavage of the aromatic rings of 2,5- and 3,5-DMPs does not result in mineralization. In addition, the tolerance of the strain to high concentrations of DMP, especially to 3,4-DMP was higher than that of other reported microorganisms from activated sludge treating phenols. CONCLUSIONS: LCW strain was able to degraded complex aromatics compounds. DMPs and benzene are reported for the first time to be degraded by a member of Delftia genus. In addition, LCW degraded DMPs with a first oxidation of the aromatic rings by a phenol hydroxylase, followed by a further meta cleavage pathway. The higher resistance to DMP toxicity, the ability to degrade and transform DMP isomers and the origin as a rhizosphere bacterium from wastewater systems, make LCW a suitable candidate to be used in bioremediation of complex DMP mixtures in CWs systems

    Linear discriminant analysis reveals differences in root architecture in wheat seedlings by nitrogen uptake efficiency

    Get PDF
    Root architecture impacts water and nutrient uptake efficiency. Identifying exactly which root architectural properties influence these agronomic traits can prove challenging. In this paper approximately 300 wheat plants were divided into four groups using two binary classifications, high vs. low nitrogen uptake efficiency (NUpE), and high vs. low nitrate in medium. The root system architecture for each wheat plant was captured using 16 quantitative variables. The multivariate analysis tool, linear discriminant analysis, was used to construct composite variables, each a linear combination of the original variables, such that the score of the wheat plants on the new variables showed the maximum between-group variability. The results show that the distribution of root system architecture traits differ between low and high NUpE wheat plants and, less strongly, between low NUpE wheat plants grown on low vs. high nitrate media

    A combined linkage, microarray and exome analysis suggests MAP3K11 as a candidate gene for left ventricular hypertrophy

    Get PDF
    Background: Electrocardiographic measures of left ventricular hypertrophy (LVH) are used as predictors of cardiovascular risk. We combined linkage and association analyses to discover novel rare genetic variants involved in three such measures and two principal components derived from them. Methods: The study was conducted among participants from the Erasmus Rucphen Family Study (ERF), a Dutch family-based sample from the southwestern Netherlands. Variance components linkage analyses were performed using Merlin. Regions of interest (LOD &gt; 1.9) were fine-mapped using microarray and exome sequence data. Results: We observed one significant LOD score for the second principal component on chromosome 15 (LOD score = 3.01) and 12 suggestive LOD scores. Several loci contained variants identified in GWAS for these traits; however, these did not explain the linkage peaks, nor did other common variants. Exome sequence data identified two associated variants after multiple testing corrections were applied. Conclusions: We did not find common SNPs explaining these linkage signals. Exome sequencing uncovered a relatively rare variant in MAPK3K11 on chromosome 11 (MAF = 0.01) that helped account for the suggestive linkage peak observed for the first principal component. Conditional analysis revealed a drop in LOD from 2.01 to 0.88 for MAP3K11, suggesting that this variant may partially explain the linkage signal at this chromosomal location. MAP3K11 is related to the JNK pathway and is a pro-apoptotic kinase that plays an important role in the induction of cardiomyocyte apoptosis in various pathologies, including LVH. © 2018 The Author(s)
    • …
    corecore