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Delftia sp. LCW, a strain isolated from a
constructed wetland shows novel
properties for dimethylphenol isomers
degradation
Mónica A. Vásquez-Piñeros1, Paula M. Martínez-Lavanchy1,2, Nico Jehmlich3, Dietmar H. Pieper4, Carlos A. Rincón1,
Hauke Harms5, Howard Junca6 and Hermann J. Heipieper1*

Abstract

Background: Dimethylphenols (DMP) are toxic compounds with high environmental mobility in water and one of the
main constituents of effluents from petro- and carbochemical industry. Over the last few decades, the use of constructed
wetlands (CW) has been extended from domestic to industrial wastewater treatments, including petro-carbochemical
effluents. In these systems, the main role during the transformation and mineralization of organic pollutants is played by
microorganisms. Therefore, understanding the bacterial degradation processes of isolated strains from CWs is an
important approach to further improvements of biodegradation processes in these treatment systems.

Results: In this study, bacterial isolation from a pilot scale constructed wetland fed with phenols led to the identification
of Delftia sp. LCW as a DMP degrading strain. The strain was able to use the o-xylenols 3,4-DMP and 2,3-DMP as sole
carbon and energy sources. In addition, 3,4-DMP provided as a co-substrate had an effect on the transformation of other
four DMP isomers. Based on the detection of the genes, proteins, and the inferred phylogenetic relationships of the
detected genes with other reported functional proteins, we found that the phenol hydroxylase of Delftia sp. LCW is
induced by 3,4-DMP and it is responsible for the first oxidation of the aromatic ring of 3,4-, 2,3-, 2,4-, 2,5- and 3,5-DMP.
The enzyme may also catalyze both monooxygenation reactions during the degradation of benzene. Proteome data led
to the identification of catechol meta cleavage pathway enzymes during the growth on ortho DMP, and validated that
cleavage of the aromatic rings of 2,5- and 3,5-DMPs does not result in mineralization. In addition, the tolerance of the
strain to high concentrations of DMP, especially to 3,4-DMP was higher than that of other reported microorganisms from
activated sludge treating phenols.

Conclusions: LCW strain was able to degraded complex aromatics compounds. DMPs and benzene are reported for the
first time to be degraded by a member of Delftia genus. In addition, LCW degraded DMPs with a first oxidation of the
aromatic rings by a phenol hydroxylase, followed by a further meta cleavage pathway. The higher resistance to DMP
toxicity, the ability to degrade and transform DMP isomers and the origin as a rhizosphere bacterium from wastewater
systems, make LCW a suitable candidate to be used in bioremediation of complex DMP mixtures in CWs systems.

Keywords: Xylenols, Biodegradation, Phenol hydroxylase, Toxicity, Constructed wetlands, Delftia sp.

* Correspondence: hermann.heipieper@ufz.de
1Helmholtz Centre for Environmental Research – UFZ, Department of
Environmental Biotechnology, Permoserstr. 15, Leipzig, Germany
Full list of author information is available at the end of the article

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Vásquez-Piñeros et al. BMC Microbiology  (2018) 18:108 
https://doi.org/10.1186/s12866-018-1255-z

http://crossmark.crossref.org/dialog/?doi=10.1186/s12866-018-1255-z&domain=pdf
http://orcid.org/0000-0002-3723-9600
mailto:hermann.heipieper@ufz.de
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Background
It is well known that the wastewater of coal conversion
and coke operation processes contains high concentra-
tions of phenolic compounds, constituting up to 80% of
the total chemical oxygen demand (COD) [1]. The phen-
olic fraction of the this wastewater is mainly represented
by phenol, cresols, resorcinols and dimethylphenols
(DMP) [2], substances which are considered toxic, car-
cinogenic, mutagenic and teratogenic [3]. The DMPs,
have shown to be even more persistent and toxic than
other phenolic compounds [4] and they are often re-
leased to the environment in higher concentration than
the permissible limits established [1, 5].
Biological treatment of phenols and their derivatives has

been the main approach for their removal [6, 7]. Biodeg-
radation of the six DMP isomers, in pure or mixed cul-
tures, often involves different Pseudomonas species [8–10].
Degradation of 2,6-DMP has only been reported by Myco-
bacterium sp. strain DM1 [11]. Studies aiming at the re-
moval of DMP in a mixture with other substituted phenols
in laboratory-scale sludge units have also been performed
[6, 12]. Recently, constructed wetlands (CWs) have been
investigated for their potential to remove coke oven waste-
water [13]. Promisingly, Schultze-Nobre et al., reported
efficient removal of a mixture of three DMP-isomers (2,6-,
3,4- and 3,5-DMP) in a laboratory scale CW [14].
Complex physicochemical and biological processes in

CWs include the interaction of plants, microorganism
and pollutants. The main role in the transformation and
mineralization of organic pollutants is played by micro-
organisms present in the rhizosphere, an environment
suitable for highly efficient transformations of complex
contaminants [15, 16]. There is, however, little know-
ledge about the bacterial removal of DMP in CWs and
detailed microbiological and molecular biological studies

are needed to reveal the biological activities towards
DMP as a basis for better management of CWs.
In this work, we aimed to isolate strains from a con-

structed wetland treating phenolic wastewater in order
to characterize the ability to degrade DMP isomers, the
toxicity tolerance toward the isomers and to reveal the
genomic and proteomic mechanisms supporting the
degradation. The first results indicated that Delftia sp.
LCW is a versatile bacterium with novel properties to
degrade DMP isomers and it could be used to enhance
phenolic compounds removal in CWs.

Results
DMP-degrading bacterium, growth and co-metabolism
assays
From the isolation trials, LCW was the strain recovered
with capabilities to use DMP as sole carbon and energy
source. According to its 16S rRNA gene sequence, the
isolate is a member of the genus Delftia. The 16S rRNA
gene is identical to that of Delftia sp. strain SM-1
(JN001163) and differs by only 1–2 bases from that of
various Delftia acidovorans isolates (e.g. D. acidovorans
SPH-1, CP000884 and D. acidovorans NBRC 14950,
AB680719; 99.9% sequence identity) but by 7–8 bases
from that of Delftia tsuruhatensis and Delftia lacustris
strains, including the respective type strains (D. lacustris
332 EU888308; D. tsuruhatensis T7, AB075017).
The strain was able to use 2,3-DMP and 3,4-DMP as

sole carbon and energy source (Fig. 1a and b). Complete
depletion of the isomers was observed and both sub-
strates yielded similar bacterial biomass (Table 1).
In mixtures of 3,4- and 2,3-DMP the latter isomer

sharply decreased the lag phase (Fig. 2a). Delftia sp. LCW
was not able to grow with the other four DMP isomers.
However, in the presence of 3,4-DMP, the isomers 2,5- and

Fig. 1 Growth (circle) of Delftia sp. LCW and degradation of a 3,4-DMP (triangle) and b 2,3-DMP (cross) as sole carbon and energy source. Bars
represent ±SD
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3,5-DMP were completely transformed (Fig. 2b and c),
whereas partial transformation of 2,4-DMP (Fig. 2d) and
no transformation of 2,6-DMP were observed (Fig. 2e).
The mixture of 3,4- and 2,3- DMP gave rise to a similar
yield to the one obtained with 3,4-DMP alone (Table 1).
Meanwhile, mixtures with 3,4- plus 3,5-, 2,5- or 2,4-DMP
yielded approx. half of the bacterial yield (Table 1). In
addition, bacterial biomass was significantly higher in the
mixture of 3,4- and 2,3- DMP than the biomass of the
other DMP mixtures (p < 0.001, Additional file 1: Table A).
Therefore, it was evident that none cell growth was giving
by 3,5-, 2,5- and 2,4-DMP. No abiotic losses were detected
in any DMP isomer solutions, proving that the decrease in
DMP concentrations was due to microbial activity (data
not shown).

Table 1 Yield coefficients and bacterial biomass for Delftia sp.
LCW grown on DMP-isomers. The overall initial concentration of
the DMP in all treatments was 70 mg L− 1

DMP Maximal Biomass
(cell mL − 1)

Yield
(mg dry weight mg−1 C-DMP)

3,4- 1.48 × 108 ± 5.66 × 106 0.73 ± 0.04

2,3- 1.42 × 108 ± 1.56 × 108 0.69 ± 0.62

3,4- + 2,3- 1.49 × 108 ± 1.27 × 107 0.73 ± 0.07

3,4- + 3,5- 7.88 × 107 ± 4.10 × 106 0.28 ± 0.04

3,4- + 2,5 8.61 × 107 ± 1.01 × 107 0.39 ± 0.02

3,4- + 2,4 6.48 × 107 ± 1.54 × 107 0.35 ± 0.02

3,4- + 2,6 6.24 × 107 ± 1.82 × 106 0.30 ± 0.66

Fig. 2 Growth (circle) of Delftia sp. LCW and degradation of the isomeric mixtures. a 3,4-DMP (triangle) and 2,3-DMP (cross), b 3,4-DMP (triangle)
with 3,5-DMP (cross), c 3,4-DMP (triangle) with 2,5-DMP (cross), d 3,4-DMP (triangle) with 2,4-DMP (cross), and e 3,4-DMP (triangle) with 2,6-DMP
(cross). Bars represent ±SD
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Detection of aerobic catabolic genes in Delftia sp. LCW
Among the different primer sets targeting catabolic genes
tested with Delftia sp. LCW, amplification was only
observed with phenol hydroxylase gene primers. The de-
duced protein sequence had a length of 214 amino-acids
and the most closely related identified protein was the
phenol hydroxylase large subunit from Delftia sp. AZ1–13
(ACZ44761). The protein clustered with phenol hydroxy-
lases of Comamonas testosteroni TA441 (BAA34172) and
other members of the family Comamonacea, as well as
some few toluene monooxygenases of Burkholderia cepa-
cea (stain JS150-AAG40791 and strain G4-AAL50373)
(Fig. 3). It was not possible to detect amplification of other
BTEX catabolic genes with the set of primers used.

Growth of Delftia sp LCW. on other aromatics
D. acidovorans grew on 30 mg L− 1 benzene to a biomass
of 7.44 × 107 ± 1.46 × 10 cell x mL within 48 h. Growth of
the strain on other BTEX compounds was not observed.

Proteomic analysis
The label-free shotgun proteomics approach allowed the
identification of 1814 proteins (Additional file 2). First, an
unsupervised clustering approach (Principal Component
Analysis, PCA) based on the different treatments, revealed
clear segregation by sample treatment. The variances
among the treatment groups showed that replicate ana-
lyses are clustering together. The PCA analysis also
showed a greater segregation between the proteome pro-
file of 3,4-DMP and 2,3-DMP among the four treatments
(Additional file 3). The proteins that were significantly dif-
ferent between 3,4- and 2,3-DMP, were functionally
assigned according to KO (KEEG Orthology), which char-
acterizes gene functions in order to infer high level protein
functions of the organism.. The main functional categories
of the proteins that differed between 3,4- and 2,3-DMP
treatments can be found in Additional file 4.
In total, five proteins related with aromatic degradation

pathways could be identified (Table 2). Phenol hydroxylase,
catechol 2,3-dioxygenase, 2-hydroxymuconic-semialdehyde
dehydrogenase and 4-oxalocronate tautomerase were iden-
tified in all treatments. Protocatechuate 4,5-dioxygenase
was identified only in 2,3-DMP grown cells. In Fig. 4, the
protein abundance of related DMP proteins present in 2,3-
and 3,4-DMP as singles isomers are indicated. There were
not significant differences of the abundances of the pro-
teins between for 2,3- and 3,4-DMP treatments, for any of
the proteins related with aromatic degradation (phenol
hydroxylase, p = 0.160; catechol 2,3-dioxygenase, p = 0.227,
2-hydroxymuconic semialdehyde dehydrogenase, p = 0.488
and 4-oxalocronate tautomerase p = 0.227) (Additional
file 1: Table B).

Toxicity of DMP-isomers to Delftia sp. LCW
Pearson correlation coefficient between EC50 and the log
Pow showed a negative correlation for all DMPs-isomers
(correlation coefficient − 0.978 and p-value =0.0007).
Hence, 3,5-DMP (represented by the highest log Pow)
had the lowest EC50 value, followed by 2,4-, 2,3-, 2,6-, 2,
5- and 3,4-DMP (Fig. 5).

Discussion
Based on the best performance to degrade DMP among
the obtained isolates, the strain named as Delftia sp.
LCW was selected. This isolate proved to be a close rela-
tive of the type strain Delftia sp. SM-1 and several strains
of Delftia acidovorans. Strains of D. acidovorans, formerly
known as Comamonas acidovorans [17], have been reported
as degraders of 4-nitrobenzoate [18], 2,4-dichlorophenoxya-
cetic acid (2,4-D) and 4-chloro-2-methylphenoxyacetic acid
(MPCA) [19]. Other isolates from the genus Delftia are able
to degrade a wide range of phenoxyalkanoic acid herbicides,
chlorinated phenols [20–22], sodium dodecyl sulfate [23],
phenanthrene [24] and taurocholate [25]. Another family re-
lated bacterium, Comamonas testosteroni CNB-2 has been
also reported to degrade 4-chlorophenol (4-CP), phenol and
methylphenols [26, 27]. However, to our knowledge this is
the first report of a Delftia strain able to degrade DMP and
benzene.
Delftia sp. LCW was able to grow on the ortho-DMP

isomers as a sole carbon and energy source. A similar
growth profile has previously reported for Cupriavidus
pinatobuensis JMP 134 [28], Pseudomonas CF600 [10, 29],
Pseudomonas aeruginosa T1 [30] and Comamonas testos-
teroni JH5 [26].
In general, DMP biodegradation have been reported for

all isomers, mainly through four different pathways, 1)
monooxygenation of the aromatic ring to form dimethylca-
techols followed by extradiol ring-cleavage as reported for
2,3- and 3,4-DMP degradation [28, 31], 2) oxidation of the
methylsubstituent to form methyl-substituted gentisates
followed by degradation through a gentisate degradative
pathway as reported for 2,5-, and 3,5-DMP degradation
[32, 33]; 3) oxidation of both methylsubstituents to form
4-hydroxyisophthalate followed by hydroxylation and deg-
radation via a protocatechuate pathway as reported for
2,4-DMP degradation [34, 35] or 4) two successive mono-
oxygenation of the aromatic ring 2,6-dimethylhydroqui-
none and 2,6-dimethyl-3-hydroxyhydroquinone as reported
for 2,6-DMP degradation [11]. Proteome analysis showed
the expression of a catechol meta cleavage pathway by Delf-
tia sp. LCW in the presence of 3,4-DMP and 2,3-DMP in-
cluding a catechol 2,3-dioxygenase, a 2-hydroxymuconic
semialdehyde dehydrogenase and a 4-oxalocronate tauto-
merase. Catechols will be formed by a phenol monooxy-
genase, where the gene encoding the alpha-subunit (P3
subunit) was also detected in the genome through PCR, in
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Fig. 3 Phylogenetical analysis of the phenol monooxygenase of Delftia sp. LCW and related proteins, using neighbor-joining method
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order to produce the corresponding dimethylcatechol. A
respective pathway for the degradation of 3,4-DMP was
previously observed in Pseudomonas sp. CF600 and
Pseudomonas putida. P35X [10, 31, 36].
Although catechol meta cleavage enzymes were detected

in the presence of 2,3-DMP, an additional enzyme was iden-
tified when the isomer was provided as sole carbon source.
This enzyme was the protocatechuate 4,5-dioxygenase
(A9C0K2). Other proteins belonging to the protocatechuate

pathway were not detected in the proteomic analysis. The
protocatechuate pathway has been described only in
2,4-DMP degradation by Pseudomonas putida NCBIMB
9866 where it is formed through the subsequent oxi-
dations both methyl group of 2,4-xylenol to form
4-hydroxyisophthalate and hydroxylation to protoca-
techuate [35]. Our results indicate that Delftia sp.
LCW produced enzymes of the protocatechuate path-
way in the presence of 2,3-DMP provided as a sole

Table 2 Identified proteins of Delftia sp. involved in phenol catabolic pathways

Treatment Entry Protein names Gene names Organism Peptide length (bp) Inferred DMP -catabolic
pathway

3,4-, 2,3- and
mixtures

D1LCK1 Phenol hydroxylase
large subunit

Bacterium AZ1–13 186 Catechol meta
and ortho cleavage

3,4- 2,3- and
mixtures

Q60GE8 Catechol
2,3-dioxygenase

ORF7NH Delftia acidovorans 314 Catechol meta cleavage

2,3- A9C0K2 Protocatechuate
4,5-dioxygenase

Daci_4445 Delftia acidovorans
(strain DSM 14801 / SPH-1)

289 Protocatechuate
meta cleavage

3,4-, 2,3- and
mixtures

Q8KRR9 2-hydroxymuconic
semialdehyde
dehydrogenase

nahI Pseudomonas fluorescens 486 Catechol meta cleavage

3,4-, 2,3- and
mixtures

A0A1C7L505 4-oxalocrotonate
tautomerase

ACM14_28930 Delftia sp. JD2 138 Catechol meta cleavage

Fig. 4 Abundance of representative proteins involved in DMP degradation with 3,4- and 2,3-DMP as singles isomers. Bars indicate mean ± SD. No
statistical differences were found (p > 0.05)
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carbon source. However, this is probably due to fortuitous
induction. Since proteins were identified by searching
against UNIPROT database for genera related to Delftia
or reported DMP-degrading bacteria, only the anticipated
proteins listed could be identified.
When a mixture of 3,4- and 2,3-DMP was provided,

there was an evident shorter lag phase for the degradation
of 2,3-DMP. Fostered degradation of DMP in mixtures with
other aromatic compounds was previously observed in a
sequencing batch reactor, where degradation kinetics of
3,4-DMP were improved in the presence of 4-nitrophenol
(4-NP) [12]. Likewise, experiments with C. testosteroni had
shown that the addition of phenol increased cell growth
and shortened the time necessary for 4-Clorophenol (CP)
degradation [27]. Similar experiments with Pseudomonas
putida XQ23 showed acceleration of 2,3-DMP degradation
in the presence of DMP mixtures [37]. Those finding, in
addition to higher abundance of meta pathway proteins in
the mixture of the ortho DMP, suggested that the presence
of 3,4-DMP in the mixture induced the expression of the
catechol meta cleavage pathway and fostered the degrad-
ation 2,3-DMP.
Strain LCW was not able to grow on any of the other

DMP isomers as a single substrate. Methylated phenols
with methyl groups in ring position five (2,5 and
3,5-DMP), have been reported to be degraded by bac-
teria via gentisate pathway metabolism [32]. Proteins re-
lated to gentisate pathways were not detected in Delftia
sp. LCW. Members of Delftia genus typically encode
gentisate pathway. However, the appropriate methylhy-
droxylase has not been found in Delftia genomes, ac-
cording to the search in PATRIC database. LCW strain
transformed 2,4-, 2,5- and 3,5-DMP in the presence of

3,4-DMP. Mixtures of 3,4- and 2,3- DMP led to higher
microbial yields than mixtures with 3,4- plus 3,5-, 2,5-
or 2,4-DMP, showing the ability of Delftia sp. LCW to
use only 3,4- and 2,3-DMP as a carbon source, and to re-
move 3,5-, 2,5- and 2,4-DMP by co-metabolic transform-
ation. Similar co-metabolic transformation of 2,4-, 3,4-
and 3,5-DMP has been reported for different strains of
Pseudomonas [9] and C. testosteroni CPW301 [27]. It was
also reported that C. testosteroni CPW301 was able to par-
tially degrade 2,5- and 3,5- DMP by co-metabolism when
growing with 4-CP and 4-MP [26]. In the case of Delftia
sp. LCW, 3,4-DMP induced the enzymatic activity that
allowed the transformation of 2,4-; 2,5- and 3,5-DMP and
fostered 2,3-DMP degradation.
Screening of catabolic genes using degenerated

primers and PCR led to the detection of the fragment of
the phenol hydroxylase large subunit [38, 39]. The phe-
nol hydroxylases comprise related family of enzymes
capable to hydroxylate mainly phenols and their
methyl-substituted derivatives to the corresponding cat-
echols [40, 41]. Some phenol hydroxylases families have
showed also the ability to transform toluene or benzene
[42]. Phylogenetical relationships of phenol hydroxylase
from LCW, showed that the closest protein is phenol hy-
droxylases from Delftia AZ1–13 (ACZ44761), which
phenotype (L6) was a representative in a lab-scale re-
actor treating phenols [43]. Phylogenetical clustering of
the phenol hydroxylase of LCW revealed similarities
with the phenol hydroxylase Comamonas testosteroni
TA441 (BAA34172) [44]. It was also similar to other
strains with reported genes for catechol meta cleavage
pathway e.g. Cupriavidus pinatubonensis [28, 45]. An-
other related phenol hydroxylase of LCW, belonging to

Fig. 5 Correlation between EC50 (half maximal effective concentration) and Log Pow (partition coefficient octanol/water) for the six DMP-isomers
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Pseudomonas sp. M1 (ABM96259) with high similarities
to the dmpKLMNOP hydroxylase gen of CF600 [46] .
In general, the catabolic pathway of 3,4- and 2,3- DMP

by Delftia sp. LCW is similar to the one previously re-
ported for Cupriavidus pinatobuensis JMP 134 [28],
Pseudomonas sp. CF600 and Pseudomonas putida P35X
[10, 29], Pseudomonas aeruginosa T1 [30] and Comamo-
nas testosteroni JH5 [26]. Furthermore, phenol hydroxy-
lases are reported to be of broad substrate specificity
and to transform, phenol, 2-methylphenols, 2,4 and
3,4-DMP, o-cresol, m-cresol [28, 40, 47, 48], and are able
to transform 2,4-DMP and 2,5-DMP [47]. Based on our
findings, it is assumed that phenol hydroxylase of Delftia
sp. LCW is not only responsible for the initial degrad-
ation of 2,3- and 3,4-DMP, but when induced by the
presence of 3,4-DMP, it would be also able to transform
other non-growth DMP isomers.
Delftia sp. LCW was also able to use benzene as

growth substrate. One known pathway for the degrad-
ation of benzene involves two successive monooxygena-
tions that are catalyzed by different soluble diiron
monooxygenases [45]. Nevertheless, some phenol mono-
oxygenases may catalyze both successive monooxygena-
tions [40]. This characteristic was found in Pseudomonas
sp. M1, where the multicomponent hydroxylase phc
gene was responsible for the initial oxidation of phenol
or benzene [46], this subunit is indeed similar to the one
found in LCW. In addition, the phenol hydroxylase gene
large subunit sequence found in LCW showed similarities
with the toluene/benzene/chlorobenzene-monooxygenase
(tbc1D) from Burkholderia sp. strain JS150 (AAG40791).
Considering the detection of this gene sequence, the corre-
sponding protein expressed and the phylogenetic similar-
ities with other well-characterized functional proteins, we
can propose that this phenol hydroxylase detected in Delf-
tia sp. LCW may be responsible of catalyzing both mono-
oxygenation reactions during the degradation of benzene.
Previous toxicity assays performed in bacterial strains

such as Vibrio fischeri, showed highest toxicity of 3,4-DMP
compared to other DMP-isomers, cresols, resorcinol and
other dihydroxyphenols [4, 49, 50]. 3,4- and 2,3-DMP from
activated sludge treating phenols-like wastewater had been
reported to be toxic for eukaryotic multicellular organisms
such as the ecotoxicological indicators Daphnia magna
and Thamnocephalus platyurus [4]. In bacteria, there are
cultures of Pseudomonas strains where the highest concen-
tration of 3,4-DMP supporting growth was in the range of
2.5 mM [51], i.e. similar to the current findings with Delftia
sp. LCW. The toxicity tests of the different DMP isomers
on Delftia sp. LCW showed that 3,5-DMP was the most
toxic isomer followed by a decreasingly toxic series in the
following order: 2,4-, 2,3-, 2,6-, 2,5- and 3,4-DMP (Fig. 5).
Considering that only 3,4-DMP contributed to 8.5%

for the phenol toxicity in ash heap water from an oil

shale industry [52] and given the fact that this isomer
can impair the performance of biological treatment pro-
cesses of phenolic wastewater [4], the tolerance and deg-
radation of 3,4-DMP by Delftia sp. LCW, together with its
role for co-metabolic transformation of other DMP isomers
support the proposal of LCW strain as a promising micro-
bial tool component on further developments of wastewa-
ter treatment technologies of phenolic compounds.

Conclusions
LCW strain was able to degraded complex aromatics
compounds. DMPs and benzene are reported for the
first time to be degraded by a member of Delftia genus.
In this strain, the isomer 3,4-DMP acted as an inducer
of phenol hydroxylase enzyme, that is responsible for a
first oxidation of the DMPs, and it is followed by a
further meta cleavage pathway for ortho-DMPs isomers.
Such induction also led to the transformation of 2,4-,
2,5- and 3,5-DMPs. The higher resistance to DMP tox-
icity, and the understanding of degradation pathways for
DMPs by LCW strain, as well as its origin as a rhizo-
sphere bacterium from CWs, make of Delftia sp. LCW a
suitable candidate to be used in bioremediation of
coke-coal contaminated sites and is important to estab-
lish technological alternatives for wastewater treatment
for coal-coke industry effluents.

Methods
Isolation and identification of DMP degrading bacteria
Bacterial strains were isolated by selective enrichment
from a pilot-scale horizontal sub-surface CW fed with
groundwater with benzene, phenols and m-cresols. In
order to select strains with potential ability to degrade
DMP for subsequent assays, bacterial growth on each of
the six single isomers of DMP as a sole carbon source
and energy was determined. The 16S rRNA gene from
the only isolate showing growth on DMP isomers and
called strain LCW, was amplified by PCR using universal
bacterial primers 27F and 1492R [53]. Sanger sequencing
of the purified PCR product was obtained (GATC Bio-
tech AG, Cologne, Germany) and the 16S rRNA gene
sequence was compared to public databases using RDP
[54] to identify closest reference sequences The 16S
rRNA gene sequence from strain LCW is available in
KY643688k with accession number KY643688 [55].

DMP degradation and co-metabolism assays
In order to evaluate degradation and co-metabolic cap-
abilities of the isolated, pure cultures of the strain were
transferred from plates to liquid LB medium and incu-
bated overnight at 30 °C with agitation. Then, cells were
harvested by centrifugation, washed three times with
phosphate buffer (50 mM of NaH2PO4, pH 7.0) and
re-suspended in 50 mL of liquid M9 [56] (turbidity of ~
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0.05 at 620 nm) with the corresponding carbon source
(as described below). First, the selected isolate was
grown on 3,4-DMP and 2,3-DMP separately with a con-
centration of 70 mg L− 1 each. In addition, co-metabolic
transformation by the strain was tested using each iso-
mer (2,3-, 2,4-, 2,5-, 2,6- and 3,5-DMP) mixed with
3,4-DMP in concentrations of 35 mg L− 1 per isomer (i.e.
70 mg L− 1 DMP in total). Each treatment was set up in
triplicates. Samples were taken from each culture every
4 and 12 h to determine cell number and DMP concen-
tration, until the stationary phase was reached. Growth
was followed by cell counting using a Coulter Counter®
(Beckman Coulter Inc) and the software Multisizer 3
Version 3.51® (Beckman Coulter Inc.). The concentration
of DMP in the cultures was measured in cell free super-
natants by HPLC (Promicence, Shimadzu) equipped
with a UV detector and a 2.7 μm by 3.0 × 150 mm poro-
shell 120 EC-C18 column (Agilent Technologies, USA).
For the separation of the DMP isomers, the mobile
phase A consisted of formic acid (0.1%) and phase B
consisted of acetonitrile (100%), using the following gra-
dients over a total run time of 45 min: 20% B to 40% B
with a flow rate of 0.2 mL min− 1 [14]. For each treat-
ment, a flask prepared under the same conditions with-
out bacterial inoculum was set up in order to determine
abiotic losses. In order to compare differences in degrad-
ation, the approximate bacterial yield for each mixture
was calculated according to the following formula:

Yield ¼ Increase in bacterial biomass mg dry biomass:mL−1
� �

C from DMP consumed mg:mL−1
� �

Increase in bacterial biomass ¼
ðCtf cell:mL−1−Ct0 cell:mL−1Þ�3 mg: mL−1�

1x107 cell:mL−1
where;

Ctf ¼ number of cells per mL at the end of the expontial phase

Ct0 ¼ number of cells per mL at time cero

* A theoretical value of 3 mg mL− 1 of dry mass
equivalent to 1 × 107 cell mL− 1 for Gram negative rod
bacteria was calculated [57]
C from DMP consumed = (DMPt0 mg. mL−1 −

DMPtf mg. mL−1) × 0.787* where,

DMPt0 ¼ Concentration of the corresponding DMP
isomer at time cero

DMPtf ¼ Concentration of the DMP isomer
at the end of the expontial phase

*1 M of DMP contains 78.7% of carbon

Growth of Delftia sp. LCW on other aromatic compounds
In order to investigate the spectrum of aromatics that
Delftia sp. LCW was able to degrade, the strain was in-
cubated with BTEX compounds. Initially, the strain was

grown on LB and incubated overnight at 30 °C with agi-
tation. Cells were harvested by centrifugation, washed
three times with phosphate buffer [50 mM of NaH2PO4,
(pH 7.0)] and re-suspended in 50 mL of M9 medium (tur-
bidity of 0.05 at 620 nm) and the selected sole carbon
source at a concentration of 30 mg L−1. The growth tests
were performed in duplicate. In addition, flasks prepared
under the same conditions without carbon sources were
tested as a negative control. Aliquots were taken for tur-
bidity measurements at 620 nm every 12 h for 2 weeks.

Detection and identification of aerobic catabolic genes in
Delftia sp. LCW
Delftia sp. LCW was assessed for the presence of cata-
bolic genes potentially involved in aerobic degradation
of aromatic compounds. Detection of monooxygenases
[38, 39, 58], intradiol catechol dioxygenases [59] and
extradiol catechol dioxygenases [39, 60] in the genome
of strain LCW was performed by PCR using previously
described degenerate primers (Additional file 5). The ob-
tained PCR products were purified and sequenced
(GATC Biotech AG, Cologne, Germany). The obtained
nucleic acid sequences were translated and compared to
entries in public databases [61]. The only detected gene
sequence from this PCR specific target survey is avail-
able in GeneBank with accession number MF804845.
Protein translation was obtained through EMBL-EBI
translation tool service [62], where, frame 3 from the
positive strand was chosen. PATRIC genome database
[63] was used in order to check the detected gene in
other related genus members.

Proteomics analysis
Protein extraction, LC-MS measurements and protein
identification were performed as described previously by
Lünsmann et al., [64]. Briefly, for protein extraction, cells
were grown on 3,4- DMP and 2,3-DMP individually and
on mixtures of 3,4- with 2,3- and 3,4- with 3,5-DMP as
described before. Bacterial cells were harvested in the mid-
dle of the exponential phase. Lysis was achieved by ultraso-
nication and proteins were recovered by denaturation and
solubilization with urea buffer. The protein lysates were ap-
plied on a polyacrylamide gel electrophoresis. Gel pieces
were cut and the proteins were lysed using trypsin over-
night. The resulting peptide lysates were separated by liquid
chromatography hyphenated with mass spectrophotometry
(LC-MS). For the identification of proteins, the acquired
LC-MS data were searched against the public database Uni-
protKB using the closest related genera, i.e. Delftia, Pseudo-
monas, Ralstonia, Comamonas and bacterium AZ1–13, as
inferred from the sequenced Phenol hydroxylase fragment.
LC-MS spectra were searched using the Proteome Discov-
erer (Thermo Fisher Scientific, v1.4, San Jose, CA, USA).
Search settings were: Sequest HT search engine, trypsin
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(full specific), MS tolerance 10 ppm, MS/MS tolerance
0.02 Da, two missed cleavage sides, dynamic modifications
oxidation (Met), static modifications carbamidomethylation
(Cys). Only peptides that passed the FDR thresholds of <
1% FDR q-value (Percolator) and rank 1 peptides were con-
sidered for further analysis. Label-free quantification was
done using the Top-3 peptide area for approach. These lin-
ear area values were log10-transformed, median normalized
and furthermore missing value imputation were performed.
Principal component analysis (PCA) was performed using
InfernoRDN (version 1.6044.35184 July 19, 2016). Hypoth-
esis significance tests were performed with Prostar [65]
using the threshold of the log fold change (FC) of 1 and the
threshold of –log (p-value) of 2 for protein abundances.
The proteins significantly differing between incubations
with the 3,4- and 2,3-DMP were functionally assigned with
the annotation tool KEGG BlastKOALA [66].

Toxicity test
Delftia sp. LCW was grown in mineral medium M9 with
4 g L− 1 of disodium succinate as carbon and energy source
in 50-mL flasks. Once the cultures reached the exponential
phase of growth, DMP isomers were added separately at dif-
ferent concentrations (one flask per concentration) ranging
from 45 to 350 mg L− 1. No DMP isomers were added to
the control culture. For each flask, the OD620mn was mea-
sured every hour until the growth stopped in one of the cul-
tures flasks. To determine the toxicity of each compound,
specific growth rate μ (h− 1), was calculated as follows [67]:

μ ½h−1� ¼ ln xt2− ln xt1
t2−t1

where,

μ [h−1] = Growth rate
xt1 = OD620 at time t1
xt2 = OD620 at time t2
t1 = one hour after toxin was added [h]
t2 = final time when the growth stopped [h]
Inhibited growth (%) was defined as the percentages of

the growth rates μ (h−1) of toxified cultures divided by
the growth rate of the control culture. EC50 was calcu-
lated for each isomer by interpolation of the concentra-
tion resulting in 50% growth inhibition. Log Pow values
were obtained from Toxnet Database [68].

Statistical analyses
In order to indicate significant differences among values
of maximal bacterial biomass in the cometabolic assay
and protein abundances of selected proteins in proteo-
mics data, normal distributions were tested with Shapiro
Wilk and further parametric or not parametric test were
performed accordingly. In addition, Pearson correlation
was performed to correlate EC50 and Log Pow values for
all isomers. Analyses were performed using SigmaPlot
Version 13.0 (®Systat Sofware, Inc.). P-values and specific
statistical tests are described in Additional file

Additional files

Additional file 1: Table A. p-values for the cometabolic assay, and
Table B. p-values of paired t-tests for the comparison between 2,3- and
3,4-DMP. (DOCX 16 kb)

Additional file 2: Table S2. Proteome raw data for DMP treatments
(XLSX 22980 kb)

Additional file 3: Figure S1. Principal component Analysis of the
proteomic profile of strain LCW for the four DMP treatments. (PNG 37 kb)

Additional file 4: Figure S2. Proteins functional category of Delftia sp.
LCW for the proteins with significant differences between 3,4- and 2,3-
DMP isomers (proteins with p-value < 0.001 for FC were selected for the
analysis). (TIF 100 kb)

Additional file 5: Table S1. Primers used for targeting catabolic genes
in the genome of Delftia sp. LCW (DOCX 34 kb)
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