156 research outputs found

    Nods, Nalps and Naip: intracellular regulators of bacterial-induced inflammation

    Full text link
    The innate immune system is the most ancestral and ubiquitous system of defence against microbial infection. The microbial sensing proteins involved in innate immunity recognize conserved and often structural components of microorganisms. One class of these pattern-recognition molecules, the Toll-like receptors (TLRs), are involved in detection of microbes in the extracellular compartment whereas a newly discovered family of proteins, the NBS-LRR proteins (for nucleotide-binding site and leucine-rich repeat), are involved in intracellular recognition of microbes and their products. NBS-LRR proteins are characterized by three structural domains: a C-terminal leucine-rich repeat (LRR) domain able to sense a microbial motif, an intermediary nucleotide binding site (NBS) essential for the oligomerization of the molecule that is necessary for the signal transduction induced by different N-terminal effector motifs, such as a pyrin domain (PYD), a caspase-activating and recruitment domain (CARD) or a baculovirus inhibitor of apoptosis protein repeat (BIR) domain. Two of these family members, Nod1 and Nod2, play a role in the regulation of pro-inflammatory pathways through NF-κB induced by bacterial ligands. Recently, it was shown that Nod2 recognizes a specific peptidoglycan motif from bacteria, muramyl dipeptide (MDP). A surprising number of human genetic disorders have been linked to NBS-LRR proteins. For example, mutations in Nod2, which render the molecule insensitive to MDP and unable to induce NF-κB activation when stimulated, are associated with susceptibility to a chronic intestinal inflammatory disorder, Crohn's disease. Conversely, mutations in the NBS region of Nod2 induce a constitutive activation of NF-κB and are responsible for Blau syndrome, another auto-inflammatory disease. Nalp3, which is an NBS-LRR protein with an N-terminal Pyrin domain, is also implicated in rare auto-inflammatory disorders. In conclusion, NBS-LRR molecules appear as a new family of intracellular receptors of innate immunity able to detect specific bacterial compounds and induce inflammatory response; the dysregulation of these processes due to mutations in the genes encoding these proteins is involved in numerous auto-inflammatory disorders.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75732/1/j.1462-5822.2003.00304.x.pd

    GEF-H1 Mediated Control of NOD1 Dependent NF-κB Activation by Shigella Effectors

    Get PDF
    Shigella flexneri has evolved the ability to modify host cell function with intracellular active effectors to overcome the intestinal barrier. The detection of these microbial effectors and the initiation of innate immune responses are critical for rapid mucosal defense activation. The guanine nucleotide exchange factor H1 (GEF-H1) mediates RhoA activation required for cell invasion by the enteroinvasive pathogen Shigella flexneri. Surprisingly, GEF-H1 is requisite for NF-κB activation in response to Shigella infection. GEF-H1 interacts with NOD1 and is required for RIP2 dependent NF-κB activation by H-Ala-D-γGlu-DAP (γTriDAP). GEF-H1 is essential for NF-κB activation by the Shigella effectors IpgB2 and OspB, which were found to signal in a NOD1 and RhoA Kinase (ROCK) dependent manner. Our results demonstrate that GEF-H1 is a critical component of cellular defenses forming an intracellular sensing system with NOD1 for the detection of microbial effectors during cell invasion by pathogens

    Amino Acid Starvation Induced by Invasive Bacterial Pathogens Triggers an Innate Host Defense Program

    Get PDF
    SummaryAutophagy, which targets cellular constituents for degradation, is normally inhibited in metabolically replete cells by the metabolic checkpoint kinase mTOR. Although autophagic degradation of invasive bacteria has emerged as a critical host defense mechanism, the signals that induce autophagy upon bacterial infection remain unclear. We find that infection of epithelial cells with Shigella and Salmonella triggers acute intracellular amino acid (AA) starvation due to host membrane damage. Pathogen-induced AA starvation caused downregulation of mTOR activity, resulting in the induction of autophagy. In Salmonella-infected cells, membrane integrity and cytosolic AA levels rapidly normalized, favoring mTOR reactivation at the surface of the Salmonella-containing vacuole and bacterial escape from autophagy. In addition, bacteria-induced AA starvation activated the GCN2 kinase, eukaryotic initiation factor 2α, and the transcription factor ATF3-dependent integrated stress response and transcriptional reprogramming. Thus, AA starvation induced by bacterial pathogens is sensed by the host to trigger protective innate immune and stress responses

    GEF-H1 Mediated Control of NOD1 Dependent NF-κB Activation by Shigella Effectors

    Get PDF
    Shigella flexneri has evolved the ability to modify host cell function with intracellular active effectors to overcome the intestinal barrier. The detection of these microbial effectors and the initiation of innate immune responses are critical for rapid mucosal defense activation. The guanine nucleotide exchange factor H1 (GEF-H1) mediates RhoA activation required for cell invasion by the enteroinvasive pathogen Shigella flexneri. Surprisingly, GEF-H1 is requisite for NF-κB activation in response to Shigella infection. GEF-H1 interacts with NOD1 and is required for RIP2 dependent NF-κB activation by H-Ala-D-γGlu-DAP (γTriDAP). GEF-H1 is essential for NF-κB activation by the Shigella effectors IpgB2 and OspB, which were found to signal in a NOD1 and RhoA Kinase (ROCK) dependent manner. Our results demonstrate that GEF-H1 is a critical component of cellular defenses forming an intracellular sensing system with NOD1 for the detection of microbial effectors during cell invasion by pathogens

    Epithelial p38α Controls Immune Cell Recruitment in the Colonic Mucosa

    Get PDF
    Intestinal epithelial cells (IECs) compose the first barrier against microorganisms in the gastrointestinal tract. Although the NF-κB pathway in IECs was recently shown to be essential for epithelial integrity and intestinal immune homeostasis, the roles of other inflammatory signaling pathways in immune responses in IECs are still largely unknown. Here we show that p38α in IECs is critical for chemokine expression, subsequent immune cell recruitment into the intestinal mucosa, and clearance of the infected pathogen. Mice with p38α deletion in IECs suffer from a sustained bacterial burden after inoculation with Citrobacter rodentium. These animals are normal in epithelial integrity and immune cell function, but fail to recruit CD4+ T cells into colonic mucosal lesions. The expression of chemokines in IECs is impaired, which appears to be responsible for the impaired T cell recruitment. Thus, p38α in IECs contributes to the host immune responses against enteric bacteria by the recruitment of immune cells

    A Commensal Helicobacter sp. of the Rodent Intestinal Flora Activates TLR2 and NOD1 Responses in Epithelial Cells

    Get PDF
    Helicobacter spp. represent a proportionately small but significant component of the normal intestinal microflora of animal hosts. Several of these intestinal Helicobacter spp. are known to induce colitis in mouse models, yet the mechanisms by which these bacteria induce intestinal inflammation are poorly understood. To address this question, we performed in vitro co-culture experiments with mouse and human epithelial cell lines stimulated with a selection of Helicobacter spp., including known pathogenic species as well as ones for which the pathogenic potential is less clear. Strikingly, a member of the normal microflora of rodents, Helicobacter muridarum, was found to be a particularly strong inducer of CXC chemokine (Cxcl1/KC, Cxcl2/MIP-2) responses in a murine intestinal epithelial cell line. Time-course studies revealed a biphasic pattern of chemokine responses in these cells, with H. muridarum lipopolysaccharide (LPS) mediating early (24–48 h) responses and live bacteria seeming to provoke later (48–72 h) responses. H. muridarum LPS per se was shown to induce CXC chemokine production in HEK293 cells stably expressing Toll-like receptor 2 (TLR2), but not in those expressing TLR4. In contrast, live H. muridarum bacteria were able to induce NF-κB reporter activity and CXC chemokine responses in TLR2–deficient HEK293 and in AGS epithelial cells. These responses were attenuated by transient transfection with a dominant negative construct to NOD1, and by stable expression of NOD1 siRNA, respectively. Thus, the data suggest that both TLR2 and NOD1 may be involved in innate immune sensing of H. muridarum by epithelial cells. This work identifies H. muridarum as a commensal bacterium with pathogenic potential and underscores the potential roles of ill-defined members of the normal flora in the initiation of inflammation in animal hosts. We suggest that H. muridarum may act as a confounding factor in colitis model studies in rodents

    Parkinson’s disease-linked LRRK2 is expressed in circulating and tissue immune cells and upregulated following recognition of microbial structures

    Get PDF
    Sequence variants at or near the leucine-rich repeat kinase 2 (LRRK2) locus have been associated with susceptibility to three human conditions: Parkinson disease (PD), Crohn’s disease and leprosy. Because all three disorders represent complex diseases with evidence of inflammation, we hypothesized a role for LRRK2 in immune cell functions
    corecore