281 research outputs found
Recommended from our members
Anthrax Sampling and Decontamination: Technology Trade-Offs
The goal of this project was to answer the following questions concerning response to a future anthrax release (or suspected release) in a building: 1. Based on past experience, what rules of thumb can be determined concerning: (a) the amount of sampling that may be needed to determine the extent of contamination within a given building; (b) what portions of a building should be sampled; (c) the cost per square foot to decontaminate a given type of building using a given method; (d) the time required to prepare for, and perform, decontamination; (e) the effectiveness of a given decontamination method in a given type of building? 2. Based on past experience, what resources will be spent on evaluating the extent of contamination, performing decontamination, and assessing the effectiveness of the decontamination in abuilding of a given type and size? 3. What are the trade-offs between cost, time, and effectiveness for the various sampling plans, sampling methods, and decontamination methods that have been used in the past
Recommended from our members
Using Whole-Building Electric Load Data in Continuous or Retro-Commissioning
Whole-building electric load data can often reveal problems with building equipment or operations. In this paper, we present methods for analyzing 15-minute-interval electric load data. These methods allow building operators, energy managers, and commissioning agents to better understand a building's electricity consumption over time and to compare it to other buildings, helping them to 'ask the right questions' to discover opportunities for electricity waste elimination, energy efficiency, peak load management, and demand response. For example: Does the building use too much energy at night, or on hot days, or in the early evening? Knowing the answer to questions like these can help with retro-commissioning or continuous commissioning. The methods discussed here can also be used to assess how building energy performance varies with time. Comparing electric load before and after fixing equipment or changing operations can help verify that the fixes have the intended effect on energy consumption. Analysis methods discussed in this paper include: ways to graphically represent electric load data; the definition of various parameters that characterize facility electricity loads; and a regression-based electricity load model that accounts for both time of week and outdoor air temperature. The methods are illustrated by applying them to data from commercial buildings. We demonstrate the ability to recognize changes in building operation, and to quantify changes in energy performance. Some key findings are: 1) Plotting time series electric load data is useful for understanding electricity consumption patterns and changes to those patterns, but results may be misleading if data from different time intervals are not weather-normalized. 2) Parameter plots can highlight key features of electric load data and may be easier to interpret than plots of time series data themselves. 3) A time-of-week indicator variable (as compared to time-of-day and day-of-week indicator variables) improves the accuracy of regression models of electric load. 4) A piecewise linear and continuous outdoor air temperature dependence can be derived without the use of a change-point model (which would add complexity to the modeling algorithm) or assumptions about when structural changes occur (which could introduce inaccuracy). 5) A model that includes time-of-week and temperature dependence can be used for weather normalization and can determine whether the building is unusually temperature-sensitive, which can indicate problems with HVAC operation
Recommended from our members
Effectiveness of Urban Shelter-in-Place. II: ResidentialDistricts
In the event of a short-term, large-scale toxic chemical release to the atmosphere, shelter-in-place (SIP) may be used as an emergency response to protect public health. We modeled hypothetical releases using realistic, empirical parameters to explore how key factors influence SIP effectiveness for single-family dwellings in a residential district. Four classes of factors were evaluated in this case-study: (a) time scales associated with release duration, SIP implementation delay, and SIP termination; (b) building air-exchange rates, including air infiltration and ventilation; (c) the degree of sorption of toxic chemicals to indoor surfaces; and (d) the shape of the dose-response relationship for acute adverse health effects. Houses with lower air leakage are more effective shelters, and thus variability in the air leakage of dwellings is associated with varying degrees of SIP protection in a community. Sorption on indoor surfaces improves SIP effectiveness by lowering the peak indoor concentrations and reducing the amount of contamination in the indoor air. Nonlinear dose-response relationships imply substantial reduction in adverse health effects from lowering the peak exposure concentration. However, if the scenario is unfavorable for sheltering (e.g. sheltering in leaky houses for protection against a nonsorbing chemical with a linear dose-response), the community must implement SIP without delay and exit from shelter when it first becomes safe to do so. Otherwise, the community can be subjected to even greater risk than if they did not take shelter indoors
Air Corrosivity in U.S. Outdoor-Air-Cooled Data Centers is Similar to That in Conventional Data Centers
There is a concern that environmental-contamination caused corrosion may negatively affect Information Technology (IT) equipment reliability. Nineteen data centers in the United States and two in India were evaluated using Corrosion Classification Coupons (CCC) to assess environmental air quality as it may relate IT equipment reliability. The data centers were of two basic types: closed and outside-air cooled. A closed data center provides cool air to the IT equipment using air conditioning in which only a small percent age of the recirculation air is make-up air continuously supplied from outside to meet human health requirements. An outside-air cooled data center uses outside air directly as the primary source for IT equipment cooling. Corrosion measuring coupons containing copper and silver metal strips were placed in both closed and outside-air cooled data centers. The coupons were placed at each data center (closed and outside-air cooled types) with the location categorized into three groups: (1) Outside - coupons sheltered, located near or at the supply air inlet, but located before any filtering, (2) Supply - starting just after initial air filtering continuing inside the plenums and ducts feeding the data center rooms, and (3) Inside located inside the data center rooms near the IT equipment. Each coupon was exposed for thirty days and then sent to a laboratory for a corrosion rate measurement analysis. The goal of this research was to investigate whether gaseous contamination is a concern for U.S. data center operators as it relates to the reliability of IT equipment. More specifically, should there be an increased concern if outside air for IT equipment cooling is used To begin to answer this question limited exploratory measurements of corrosion rates in operating data centers in various locations were undertaken. This study sought to answer the following questions: (1) What is the precision of the measurements (2) What are the approximate statistical distributions of copper and silver corrosion rates in the sampled data centers(3) To what extent are copper and silver corrosion measurements related (4) What is the relationship of corrosion rate measurements between outside-air cooled data centers compared to closed data centers (5) How do corrosivity measurements relate to IT equipment failure rates The data from our limited sample size suggests that most United States data center operators should not be concerned with environmental gaseous contamination causing high IT equipment failure rates even when using outside-air cooling. The research team recommends additional basic research on how environmental conditions, specifically gaseous contamination, affect electronic equipment reliability
A Method to Estimate the Chronic Health Impact of Air Pollutants in U.S. Residences
Background: Indoor air pollutants (IAPs) cause multiple health impacts. Prioritizing mitigation options that differentially affect individual pollutants and comparing IAPs with other environmental health hazards require a common metric of harm
Recommended from our members
Effectiveness of Urban Shelter-in-Place. III: Commercial Districts
In the event of a toxic chemical release to the atmosphere, shelter-in-place (SIP) is an emergency response option available to protect public health. This paper is the last in a three-part series that examines the effectiveness of SIP at reducing adverse health effects in communities. We model a hypothetical chemical release in an urban area, and consider SIP effectiveness in protecting occupants of commercial buildings. Building air infiltration rates are predicted from empirical data using an existing model. We consider the distribution of building air infiltration rates both with mechanical ventilation systems turned off and with the systems operating. We also consider the effects of chemical sorption to indoor surfaces and nonlinear chemical dose-response relationships. We find that commercial buildings provide effective shelter when ventilation systems are off, but that any delay in turning off ventilation systems can greatly reduce SIP effectiveness. Using a two-zone model, we find that there can be substantial benefit by taking shelter in the inner parts of a building that do not experience direct air exchange with the outdoors. Air infiltration rates vary substantially among buildings and this variation is important in quantifying effectiveness for emergency response. Community-wide health metrics, introduced in the previous papers in this series, can be applied in pre-event planning and to guide real-time emergency response
Recommended from our members
Guidelines to improve airport preparedness against chemical and biological terrorism.
Guidelines to Improve Airport Preparedness Against Chemical and Biological Terrorism is a 100-page document that makes concrete recommendations on improving security and assessing vulnerable areas and helps its readers understand the nature of chemical and biological attacks. The report has been turned over to Airports Council International (ACI) and the American Association of Airport Executives (AAAE), two organizations that together represent the interests of thousands of airport personnel and facilities in the U.S. and around the world
Conservation decisions under pressure: Lessons from an exercise in rapid response to wildlife disease
Novel outbreaks of emerging pathogens require rapid responses to enable successful mitigation. We simulated a 1âday emergency meeting where experts were engaged to recommend mitigation strategies for a new outbreak of the amphibian fungal pathogen Batrachochytrium salamandrivorans. Despite the inevitable uncertainty, experts suggested and discussed several possible strategies. However, their recommendations were undermined by imperfect initial definitions of the objectives and scope of management. This problem is likely to arise in most realâworld emergency situations. The exercise thus highlighted the importance of clearly defining the context, objectives, and spatialâtemporal scale of mitigation decisions. Managers are commonly under pressure to act immediately. However, an iterative process in which experts and managers cooperate to clarify objectives and uncertainties, while collecting more information and devising mitigation strategies, may be slightly more time consuming but ultimately lead to better outcomes
Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial
Background
Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy
- âŠ