705 research outputs found

    Compared to conventional, ecological intensive management promotes beneficial proteolytic soil microbial communities for agro-ecosystem functioning under climate change-induced rain regimes

    Get PDF
    Projected climate change and rainfall variability will affect soil microbial communities, biogeochemical cycling and agriculture. Nitrogen (N) is the most limiting nutrient in agroecosystems and its cycling and availability is highly dependent on microbial driven processes. In agroecosystems, hydrolysis of organic nitrogen (N) is an important step in controlling soil N availability. We analyzed the effect of management (ecological intensive vs. conventional intensive) on N-cycling processes and involved microbial communities under climate change-induced rain regimes. Terrestrial model ecosystems originating from agroecosystems across Europe were subjected to four different rain regimes for 263 days. Using structural equation modelling we identified direct impacts of rain regimes on N-cycling processes, whereas N-related microbial communities were more resistant. In addition to rain regimes, management indirectly affected N-cycling processes via modifications of N-related microbial community composition. Ecological intensive management promoted a beneficial N-related microbial community composition involved in N-cycling processes under climate change-induced rain regimes. Exploratory analyses identified phosphorus-associated litter properties as possible drivers for the observed management effects on N-related microbial community composition. This work provides novel insights into mechanisms controlling agro-ecosystem functioning under climate change

    Metabolic flexibility as a major predictor of spatial distribution in microbial communities

    Get PDF
    A better understand the ecology of microbes and their role in the global ecosystem could be achieved if traditional ecological theories can be applied to microbes. In ecology organisms are defined as specialists or generalists according to the breadth of their niche. Spatial distribution is often used as a proxy measure of niche breadth; generalists have broad niches and a wide spatial distribution and specialists a narrow niche and spatial distribution. Previous studies suggest that microbial distribution patterns are contrary to this idea; a microbial generalist genus (Desulfobulbus) has a limited spatial distribution while a specialist genus (Methanosaeta) has a cosmopolitan distribution. Therefore, we hypothesise that this counter-intuitive distribution within generalist and specialist microbial genera is a common microbial characteristic. Using molecular fingerprinting the distribution of four microbial genera, two generalists, Desulfobulbus and the methanogenic archaea Methanosarcina, and two specialists, Methanosaeta and the sulfate-reducing bacteria Desulfobacter were analysed in sediment samples from along a UK estuary. Detected genotypes of both generalist genera showed a distinct spatial distribution, significantly correlated with geographic distance between sites. Genotypes of both specialist genera showed no significant differential spatial distribution. These data support the hypothesis that the spatial distribution of specialist and generalist microbes does not match that seen with specialist and generalist large organisms. It may be that generalist microbes, while having a wider potential niche, are constrained, possibly by intrageneric competition, to exploit only a small part of that potential niche while specialists, with far fewer constraints to their niche, are more capable of filling their potential niche more effectively, perhaps by avoiding intrageneric competition. We suggest that these counter-intuitive distribution patterns may be a common feature of microbes in general and represent a distinct microbial principle in ecology, which is a real challenge if we are to develop a truly inclusive ecology

    Anisotropic Panglial Coupling Reflects Tonotopic Organization in the Inferior Colliculus

    Get PDF
    Astrocytes and oligodendrocytes in different brain regions form panglial networks and the topography of such networks can correlate with neuronal topography and function. Astrocyte-oligodendrocyte networks in the lateral superior olive (LSO)—an auditory brainstem nucleus—were found to be anisotropic with a preferred orientation orthogonally to the tonotopic axis. We hypothesized that such a specialization might be present in other tonotopically organized brainstem nuclei, too. Thus, we analyzed gap junctional coupling in the center of the inferior colliculus (IC)—another nucleus of the auditory brainstem that exhibits tonotopic organization. In acute brainstem slices obtained from mice, IC networks were traced employing whole-cell patch-clamp recordings of single sulforhodamine (SR) 101-identified astrocytes and concomitant intracellular loading of the gap junction-permeable tracer neurobiotin. The majority of dye-coupled networks exhibited an oval topography, which was preferentially oriented orthogonal to the tonotopic axis. Astrocyte processes showed preferentially the same orientation indicating a correlation between astrocyte and network topography. In addition to SR101-positive astrocytes, IC networks contained oligodendrocytes. Using Na+ imaging, we analyzed the capability of IC networks to redistribute small ions. Na+ bi-directionally diffused between SR101-positive astrocytes and SR101-negative cells—presumably oligodendrocytes—showing the functionality of IC networks. Taken together, our results demonstrate that IC astrocytes and IC oligodendrocytes form functional anisotropic panglial networks that are preferentially oriented orthogonal to the tonotopic axis. Thus, our data indicate that the topographic specialization of glial networks seen in IC and LSO might be a general feature of tonotopically organized auditory brainstem nuclei

    Of mammals and bacteria in a rainforest: Temporal dynamics of soil bacteria in response to simulated N pulse from mammalian urine

    Get PDF
    Pulse-type perturbation through excreta by animals creates a mosaic of short-term high nutrient-load patches in the soil. How this affects microbial community composition and how long these impacts last are important for microbial community dynamics and nutrient cycling. Our study focused on the short-term responses to N by bacterial communities and ‘functional groups’ associated with the N cycle in a lowland evergreen tropical rainforest. We applied a single urea pulse, equivalent to urine-N deposition by medium-sized mammals to simulate N enrichment and changes in soil N availability, and analysed soil bacterial communities using molecular methods, before and after urea application. Urea addition increased mineral N availability and changed bacterial community composition, from phylum to operational taxonomic unit levels, however, taxon richness and diversity were unaffected. Taxa involved in the physiologically “narrow” processes of nitrification (e.g. Nitrosospira) and denitrification (e.g. Phyllobacteriaceae, Xanthomonadaceae and Comamonadaceae) increased their relative abundance, while N2-fixers (e.g. Rhodospirillales, and Rhizobiales) decreased after treatment. While a temporal legacy on both community composition and functional group profile was observable 58 and 159 days after treatment, at the latter date bacterial communities were already tending towards pre-treatment composition. We suggest that pulse-type perturbation by mammal urine that occurs on a daily basis has strong short-term effects on patch dynamics of soil microbiota and N availability. Such a spatio-temporally dynamic soil environment enhances overall microbial richness and diversity, and contributes to the apparent temporal resilience of community composition. A plain language summary is available for this article. © 2017 The Authors. Functional Ecology © 2017 British Ecological Societ

    Controlled Release from Cleavable Polymerized Liposomes upon Redox and pH Stimulation

    Get PDF
    A gallate derivative with three propargyl groups was coupled to palmitoyl oleoyl phosphoethanolamine (POPE). The resulting anionic lipid was formulated with common lipids such as palmitoyl oleoyl phosphatidyl choline (POPC) to form large unilamellar vesicles (LUVs). Polymerization of the LUVs was accomplished by the Cu(I)-catalyzed click reaction between the propargyl groups and the azide groups in the cross-linker. When the cross-linker contained a disulfide or ketal group, the resulting polymerized liposomes depolymerized and released entrapped contents upon the addition of a reducing thiol or under weakly acidic conditions. The click reaction allowed simultaneous multivalent surface functionalization during cross-linking, making these cleavable polymerized liposomes (CPLs) potentially very useful in the delivery and controlled release of pharmaceutical agents

    Origin and insertion of the medial patellofemoral ligament: a systematic review of anatomy.

    Get PDF
    PURPOSE: The medial patellofemoral ligament (MPFL) is the major medial soft-tissue stabiliser of the patella, originating from the medial femoral condyle and inserting onto the medial patella. The exact position reported in the literature varies. Understanding the true anatomical origin and insertion of the MPFL is critical to successful reconstruction. The purpose of this systematic review was to determine these locations. METHODS: A systematic search of published (AMED, CINAHL, MEDLINE, EMBASE, PubMed and Cochrane Library) and unpublished literature databases was conducted from their inception to the 3 February 2016. All papers investigating the anatomy of the MPFL were eligible. Methodological quality was assessed using a modified CASP tool. A narrative analysis approach was adopted to synthesise the findings. RESULTS: After screening and review of 2045 papers, a total of 67 studies investigating the relevant anatomy were included. From this, the origin appears to be from an area rather than (as previously reported) a single point on the medial femoral condyle. The weighted average length was 56 mm with an 'hourglass' shape, fanning out at both ligament ends. CONCLUSION: The MPFL is an hourglass-shaped structure running from a triangular space between the adductor tubercle, medial femoral epicondyle and gastrocnemius tubercle and inserts onto the superomedial aspect of the patella. Awareness of anatomy is critical for assessment, anatomical repair and successful surgical patellar stabilisation. LEVEL OF EVIDENCE: Systematic review of anatomical dissections and imaging studies, Level IV

    Regional microbial signatures positively correlate with differential wine phenotypes: evidence for a microbial aspect to terroir

    Get PDF
    Many crops display differential geographic phenotypes and sensorial signatures, encapsulated by the concept of terroir. The drivers behind these differences remain elusive, and the potential contribution of microbes has been ignored until recently. Significant genetic differentiation between microbial communities and populations from different geographic locations has been demonstrated, but crucially it has not been shown whether this correlates with differential agricultural phenotypes or not. Using wine as a model system, we utilize the regionally genetically differentiated population of Saccharomyces cerevisiae in New Zealand and objectively demonstrate that these populations differentially affect wine phenotype, which is driven by a complex mix of chemicals. These findings reveal the importance of microbial populations for the regional identity of wine, and potentially extend to other important agricultural commodities. Moreover, this suggests that long-term implementation of methods maintaining differential biodiversity may have tangible economic imperatives as well as being desirable in terms of employing agricultural practices that increase responsible environmental stewardship
    corecore