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Abstract 23 

Many crops display differential geographic phenotypes and sensorial signatures, encapsulated by the 24 

concept of terroir. The drivers behind these differences remain elusive, and the potential 25 

contribution of microbes has been ignored until recently. Significant genetic differentiation between 26 

microbial communities and populations from different geographic locations has been demonstrated, 27 

but crucially it has not been shown whether this correlates with differential agricultural phenotypes 28 

or not. Using wine as a model system, we utilize the regionally genetically differentiated population 29 

of Saccharomyces cerevisiae in New Zealand and objectively demonstrate that these populations 30 

differentially affect wine phenotype, which is driven by a complex mix of chemicals. These findings 31 

reveal the importance of microbial populations for the regional identity of wine, and potentially 32 

extend to other important agricultural commodities. Moreover, this suggests that long-term 33 

implementation of methods maintaining differential biodiversity may have tangible economic 34 

imperatives as well as being desirable in terms of employing agricultural practices that increase 35 

responsible environmental stewardship. 36 

 37 
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Many important crops that comprise the same or very similar genotypes display differential 44 

geographic phenotypes in terms of the physical and sensorial signatures of their produce: this is 45 

generally encapsulated by the concept of terroir1. Often the chemical descriptors of these 46 

differential geographic phenotypes are well documented2-9; however, the factors that drive these 47 

differences remain elusive10. Classically, differential agricultural geographic phenotypes are thought 48 

to result from complex interactions between specific crop genotypes and local soils, topography, 49 

climate and agricultural practices, and these differential manifestations are commercially important 50 

as they add distinctiveness and thus value to products10. Microbes play key roles in the production of 51 

quality agricultural commodities for reasons ranging from their effect on crop nutrient availability via 52 

rhizosphere interactions with roots, through to their role in crop disease pressure: ultimately 53 

microbes influence plant and fruit health11-13. Additionally microbes transform plant products to 54 

economically and socially important commodities such as coffee, chocolate, bread, beer and a range 55 

of other fermented beverages including wine14. The potential contribution of, and link between, 56 

microbes and differential geographic phenotypes, or terroir, of agricultural products is assumed to 57 

exist, but to date has not been objectively verified1,15-17.  58 

 59 

Wine has been made by humans since the dawn of civilization and is an important social and 60 

economic commodity. It arguably displays the strongest geographic signatures of all agricultural 61 

products and thus is a superb model to evaluate the degree to which there might be a microbial 62 

aspect to terroir. However, even for wine the drivers of terroir remain largely untested10. Microbes, 63 

predominantly fungi, may significantly affect the ‘phenotype’ of wine firstly by affecting grapevine 64 

and fruit health and development, and thus quality18, and secondly by manipulating wine flavor, 65 

aroma and style due to their actions during fermentation19,20. During alcoholic fermentation fungi 66 

including Saccharomyces cerevisiae, the primary yeast involved in wine fermentation, not only 67 

convert sugars into ethanol but also produce an array of secondary metabolites, including volatile 68 

compounds, that are important to wine aroma and flavor21,22. While grape-derived compounds may 69 
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provide varietal distinctions, at least yeast-derived acids, alcohols, carbonyl compounds, phenols, 70 

esters, sulfur compounds and monoterpenoids all significantly contribute to wine quality and 71 

aroma22,23.  72 

 73 

It is well documented that different species of microbes differentially affect vine health and 74 

development, and that different species of yeast, and even different genotypes of S. cerevisiae, 75 

produce different aroma profiles in wine18,19,24,25. Only recently has evidence been provided for the 76 

regional delineations of both microbial communities, and populations of S. cerevisiae, associated 77 

with vines and the populations driving the spontaneous ferment of fruit from these vines into 78 

wine1,16,17. On the face of it, together, these two sets of observations might seem enough to 79 

conclude that microbes have an influence on differential agricultural geographic signatures, at least 80 

for wine. However, the critical assumption here is that there is a positive correlation between 81 

microbial relatedness, and aroma profiles in wine: i.e. that closely related microbes and their 82 

communities produce closely related agricultural geographic signatures. This has not been shown, 83 

but here we provide the first evidence for such a link. 84 

 85 

To evaluate this idea we focused on the potential for microbes to influence differential geographic 86 

wine phenotypes via fermentation. Wine may be made by either attempting to remove the array of 87 

microbes that are naturally associated with grapes and then deliberately inoculating with a 88 

commercial strain of yeast, or allowing the microbes naturally associated with grapes to conduct the 89 

ferment26. The former inoculated option reduces the potential for microbes to contribute to terroir, 90 

during fermentation at least, and has only been available commercially to winemakers since 196527. 91 

The latter has been employed by humans since the dawn of civilization and is known as spontaneous 92 

or wild fermentation, and may comprise at least tens of species and hundreds of strains of S. 93 

cerevisiae1,28.  Since spontaneously fermented wine comprises a diversity of yeast species and strains 94 
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of S. cerevisiae, metabolic interactions between these different types may also potentially be the key 95 

to any microbial signature contributing to terroir. Due to the complex and often unpredictable 96 

nature of microbial interactions, community effects on the chemical and sensorial properties of wine 97 

are hard to experimentally control. As a first step towards understanding the impact microbes have 98 

on the regional distinctiveness of wine, we focus on the dominant species driving fermentation: S. 99 

cerevisiae. 100 

 101 

We have recently shown there are genetically differentiated natural sub-populations of S. cerevisiae 102 

associated with vineyards and spontaneous ferments in major regions in New Zealand (NZ)17. Using 103 

population genetic analyses, here we select appropriate genetic representatives from these regional 104 

S. cerevisiae sub-populations and analyze their fermentative effects on a suite of chemicals known to 105 

significantly affect the phenotype of wine. We test for the presence of correlations between the 106 

genetic relatedness of these natural regional S. cerevisiae sub-populations and their resulting wine 107 

phenotypes, to conduct the first empirical test for whether there is a microbial aspect to terroir. 108 

 109 

 110 

Results 111 

Selection of S. cerevisiae genotypes 112 

Recently Knight and Goddard17 isolated 3,900 S. cerevisiae from native forests, vineyards, and the 113 

spontaneous ferments of Vitis vinifera var Sauvignon Blanc fruit from six major regions in NZ 114 

(Hawke’s Bay, Martinborough, Nelson, Wairau Valley, Awatere Valley and Central Otago). 115 

Microsatellite genotype profiling of these isolates revealed the presence of 295 different genotypes. 116 

Bayesian population structure methods, and statistical analyses of the resulting ancestry profiles29, 117 

showed significantly distinct sub-populations residing in each of these regions17. Here we use the 118 
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genetic ancestry profiles produced from Bayesian analysis, in combination with regional allele 119 

frequencies, to select S. cerevisiae genotypes from each of these regional sub-populations that span 120 

and represent the genetic diversity within each region. Genotypes that belong to the main inferred 121 

population correlating with each region, that also maximize the diversity of alleles present in each 122 

region, were selected, including at least one genotype that harbored regionally unique alleles. 123 

Supplementary Table S1 shows the Bayesian ancestry profiles for the genotypes originally analyzed 124 

by Knight and Goddard17: the inferred sub-populations common in each regions are noted and the 125 

genotypes selected for use in this study are highlighted. The allele frequencies within each regional 126 

population are shown in Supplementary Table S2 with the alleles harbored by the selected 127 

genotypes in this analysis highlighted. Due to the large diversity of alleles observed in each regional 128 

population, and the constraints on the number of ferments we could perform and analyze here, 129 

clearly not every allele could be represented. Rather, we included those genotypes harboring the 130 

more common alleles in each region: genotypes selected ensured that the average proportion of 131 

each population that harbored the represented alleles was no lower than 60% (Supplementary Table 132 

S2).  133 

 134 

Ferment Performance 135 

All ferments were conducted using the same commercially derived batch of homogenized and 136 

sterilized Sauvignon Blanc juice from Marlborough in NZ. Six individual S. cerevisiae genotypes from 137 

each region, and co-inoculations of all six genotypes representing regional populations, were 138 

fermented in triplicate across three separate batches totaling 126 ferments. The extent to which 139 

sugars were fermented was analyzed by weight loss30, and most lost approximately 25 g indicating 140 

complete fermentation given the 220 g of sugar in the juice initially. One genotype from the Wairau 141 

Valley failed to ferment at all and was removed from all analyses. Eleven single genotype ferments, 142 

all in the third batch, displayed significantly less weight loss than the remaining ferments (F1, 108 = 143 
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905.9, P < 0.0001), indicating incomplete fermentation which is known to affect the volatile profiles 144 

of wines31. Also consistent with incomplete fermentation, the final concentration of ethanol in these 145 

ferments reduced (Dataset S1). It would also be expected that these ferments would have higher 146 

residual sugar but curiously the residual sugar reported for all of these ferments is below 2.5 g/L 147 

suggesting the majority of the sugar has been consumed (Dataset S1). To confirm this observation 148 

the wines from the third batch were also analyzed for residual sugar using an alternate enzymatic 149 

assay (Megazyme D-Fructose/D-Glucose assay kit), which confirmed the low residual sugar levels, 150 

reporting concentrations between 0 – 1.1 g/L. This suggests these ferments may not have had as 151 

much sugar at the start of fermentation, potentially caused by incomplete mixing of the initial juice 152 

before allocation into flasks. We therefore conservatively removed these ferments from all further 153 

analyses. Lag phase, the time taken for fermentation to initiate, differed significantly between 154 

batches (F2, 89 = 7.73, P = 0.0008), and since each batch contained one replicate of each sample, this 155 

was controlled for in subsequent statistical analyses by introducing a “batch” factor.  156 

 157 

Chemical profiles produced by single genotype ferments correlate with region of microbe origin 158 

We quantified the concentrations of 39 volatile compounds and wine quality parameters produced 159 

in each of the 112 successful ferments using targeted GC-MS and FTIR analyses. First we analyzed 160 

the volatile profiles deriving from ferments conducted by single yeast genotypes only. A 161 

Permutational Multivariate Analysis of Variance (PERMANOVA) employing a full factorial model with 162 

“region” and “batch” as main effects, and where permutations kept replicates of each genotype 163 

together, revealed that both factors significantly affected volatile profiles (both P = 0.001), but 164 

provided no evidence of an interaction between these main effects (Table 1a). The R2 value for the 165 

region effect was greatest reporting the geographic origin of the S. cerevisiae genotypes explained 166 

approximately 10 % of the total variation in the chemical profiles (Table 1a). The lack of significance 167 

for the interaction term indicates this result is not confounded by the differences between batches.  168 

In addition, we analyzed these differential chemical profiles by accounting for human perception 169 
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thresholds of compounds. Where available, we used empirically determined odor activity values 170 

(OAVs) to standardize the various chemical concentrations in these ferments32,33.  The results of the 171 

subsequent PERMANOVA agreed with the initial analyses and again revealed a highly significant 172 

effect of the region of S. cerevisiae isolation on these wine phenotypes (Region: R2 = 0.127, P = 173 

0.002; Table 1b). Thus, we can categorically reject the null hypothesis, and move to accept that there 174 

is a significant correlation between the region of isolation of S. cerevisiae and aroma profiles in wine. 175 

 176 

Regional pairwise PERMANOVA analyses revealed different degrees of distinction between the 177 

chemical profiles produced by S. cerevisiae genotypes originating from different regions 178 

(Supplementary Table S3). P-values can be misleading when multiple comparisons are performed34, 179 

and it has been argued that more emphasis should be placed on the magnitude of the effect when 180 

dissecting differences35: we therefore examined the magnitude of the F-statistics from these 181 

multiple comparisons as a measure of the strength of evidence for a regional effect (i.e. the higher 182 

the F-statistic, the stronger the support for a regional effect). The chemical profiles of yeasts 183 

originating from Nelson are the most distinct compared to other regions with the mean of the 184 

pairwise F-statistics involving this region being the highest at 3.20 (Fig. 1; Supplementary Table S3). 185 

Nelson’s similarity to all regions is low with the exception of the Awatere Valley (Fig. 1). The Awatere 186 

and Wairau Valleys are the most similar to other regions (Fig. 1) and report the least distinct 187 

chemical profiles compared to other regions with mean F-statistics of 1.19 and 1.73 respectively 188 

(Supplementary Table S3). Central Otago, Martinborough and Hawke’s Bay are intermediate with a 189 

mix of both highly similar and more distinct relationships with other regions (Fig. 1; Supplementary 190 

Table S3).  191 

 192 

To effectively visualize the differences in chemical profiles, the data were transformed and plotted 193 

using Constrained Correspondence Analysis (CCA)36. Overall a large overlap is observed between 194 
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chemical profiles derived from genotypes from different regions (Fig. 2); however, the chemical 195 

profiles of Central Otago genotypes cluster in the upper half and those from Nelson mostly toward 196 

the lower left quadrant, with the exception of the three replicate samples from one genotype that 197 

are located in the upper right quadrant (Fig. 2a). The genotypes from Wairau and Awatere Valleys 198 

have the largest ellipses indicating a larger variability in the chemical profiles of these samples (Fig. 199 

2b). 200 

 201 

Chemical drivers of regional differentiation in single ferment samples 202 

Next we evaluated which components of the volatile profiles might be driving these differences in 203 

wine phenotype. Individual ANOVA analyses were performed for each of the chemical properties 204 

measured. As explained above, F-statistics are reported here in place of P-values as they are a more 205 

appropriate measure of support for multiple comparisons. We designate F-statistics larger than two 206 

as having a sizeable effect (i.e. region explains more the twice the variation in the model compared 207 

to the residuals), and thus 29 of the 39 compounds vary with respect to the region of origin of the 208 

yeast genotype (Supplementary Table S4). R2 values range from zero to 38% of the variation being 209 

explained by the S. cerevisiae genotype region of isolation, but no one class of chemical compound is 210 

exclusively responsible for the regional signal for wine phenotypes (Supplementary Table S4).  211 

 212 

CCA additionally provides vectors indicating the direction and magnitude of influence that each 213 

chemical property has on the positioning of the sample aroma profiles within the plot, and 214 

potentially provides a mechanism to infer which chemicals differentiate each region. Four 215 

compounds (three esters and one fatty acid) have the greatest impact on the distribution of these 216 

wine phenotypes generally with vectors of a magnitude larger than 0.25 (Fig. 3a); however these 217 

chemical compounds are not necessarily correlated to the differentiation calculated between 218 

regions.  To focus on and visualize the vectors of the chemical properties most important to the 219 



10 
 

differences in chemical profiles between ferments conducted by yeasts derived from different 220 

regions we identified those chemicals that reported R2 values above 0.25, and F-statistics above 5 in 221 

the individual ANOVA analyses (Fig. 3b and c; Supplementary Table S4).  This reveals that 222 

concentrations of ethyl isobutyrate and ethyl-2-methyl butanoate, which have apple and sweet fruit 223 

sensory descriptors, are on average both greatest in the ferments conducted by the genotypes 224 

deriving from Nelson and least in those from Central Otago and Martinborough. In addition, 225 

concentrations of ethyl butanoate (sensory descriptors of peach, apple and sweet) are on average 226 

greatest in ferments conducted by genotypes derived from Martinborough, and least in ferments 227 

conducted by genotypes derived from Nelson (Fig. 3). β-damascenone (sensory descriptors of apple, 228 

honey and floral) concentrations are on average greater in the ferments conducted by yeast 229 

genotypes derived from the Awatere and Wairau Valleys comprising the larger Marlborough region, 230 

and least from the ferments conducted by genotypes deriving from the Hawke’s Bay. Together this 231 

paints an intuitively sensible picture and reveals that the differential wine phenotype signatures 232 

driven by yeasts derived from different regions are not one-dimensional but multi-faceted. 233 

 234 

The genetic basis for differences in chemical profiles 235 

While not exclusively genetically determined, the types and concentrations of metabolites produced 236 

by S. cerevisiae are significantly influenced by yeast genotype37-39. It is thus not surprising that a 237 

Mantel test evaluating the correlation between S. cerevisiae genotype genetic distance (using 238 

microsatellite profiles)17 and volatile chemical profile distance (calculated using Jaccard dissimilarity) 239 

reveal they are significantly correlated  (R2 = 0.189; P < 0.0001). This formally allows us to accept the 240 

alternate hypothesis at the core of this study: that there is a significant correlation between the 241 

genetic relatedness of natural S. cerevisiae sub-populations and their effect on resulting wine 242 

phenotypes. Additionally, PERMANOVA analysis using the assignment of genotypes to inferred 243 

genetic clusters calculated using InStruct17 as a factor, as opposed to region of origin, increased the 244 
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R2 value by 0.051 to 0.151 or 15% (P = 0.007). Some of the genotypes do not have a high proportion 245 

of ancestry to any one inferred population, and thus have mixed ancestry to different regions 246 

(Dataset S1). If these hybrid genotypes are removed and only those genotypes with a ‘clean’ 247 

geographic signal are analyzed, the PERMANOVA analysis reveals an increase in the R2 for the factor 248 

“region” to 0.198 (P = 0.006), double that of the original analysis (Table 1c). 249 

 250 

The effect of regionally co-fermented genotypes and blended wines on volatile profiles 251 

There is evidence to show that the presence of other yeasts during fermentation, be they 252 

conspecifics or other species, may affect the subsequent volatile profiles of wine compared to the 253 

profiles produced when genotypes ferment in isolation25,40-42. We moved to evaluate whether 254 

interactions between genotypes from each region may affect and potentially alter regional signals 255 

for wine phenotypes. We compared the volatile profile of regional co-ferments, produced by 256 

inoculating all six genotypes from a region together in equal proportions, to regional blends, created 257 

by mixing the final wine produced by single genotypes from each region in equal proportions. 258 

PERMANOVA reveals that the type of ferment (co-ferment or blend) has a significant effect on 259 

chemical profiles (R2 = 0.061, P = 0.014; Table 1d). Again CCA was used to visualize the differences 260 

between the chemical profiles, and while overlap between the blends and co-ferments is evident, 261 

the blended ferments show less variability than the co-ferments, and are typically placed in the 262 

lower right of the plot (Supplementary Fig. S1a). Individual chemical ANOVA and the resulting CCA 263 

plot show the main differences between the co-ferments and blends are driven by ethyl decanoate, 264 

ethyl dodecanoate, ethyl octanoate and ethyl acetate (Supplementary Fig. S1b).  265 

 266 

While the co-fermentation of multiple genotypes significantly affects the phenotype of wine 267 

compared to blending, it appears to erode signal for wine phenotype regionality, as PERMANOVA 268 

analysis reveals no strong regional co-ferment effect on volatile profiles (R2 = 0.346, P = 0.073; Table 269 
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1e). However, this may be an issue of statistical power – only three replicates of regional co-270 

ferments and blends were implemented compared to the six volatile profiles from each of six 271 

genotypes from each region in the initial analysis. It is worth noting that the P-value for the effect of 272 

region reported by the co-ferments is marginal (P = 0.073), but the value for blends is not (P = 0.196) 273 

(Table 1 e and f), and might suggest that blending more greatly erodes any signal for regional wine 274 

phenotype than co-fermentation does. 275 

 276 

 277 

Discussion 278 

We experimentally tested and quantified the extent to which genetically distinct regional 279 

populations of S. cerevisiae affect wine phenotype in terms of volatile composition. We show 280 

significant positive correlations between the genetic and geographic relatedness of natural S. 281 

cerevisiae sub-populations and their effect on resulting wine phenotypes. As far as we are aware this 282 

is the first empirical test for whether there is potential for a microbial aspect to terroir. This result 283 

aligns with the belief that microbes significantly contribute to the regional identity or terroir of wine 284 

and may potentially extend to the differential effects of microbes on other important agricultural 285 

crops and produce generally.  286 

 287 

The ability of microbes to affect differential crop phenotypes is potentially greater than we estimate 288 

here. First, we have not evaluated microbes’ effect on crop development and how this might vary 289 

between differential geographic communities and populations. This is apparent in some sense, as 290 

different crops tend to suffer different levels of disease in different geographic areas; however the 291 

subtler effects of microbes on crop development and quality are mostly not understood. Moreover, 292 

many other species of fungi and bacteria contribute to the natural conversion of juice to wine and 293 
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many of these also significantly affect wine phenotype, and there is good evidence to show these 294 

may synergistically interact25,40. Thus, the presence of regionally differentiated communities of yeast 295 

and bacteria associated with ripe fruit, as has been demonstrated1,15-17, may further affect 296 

differences in wine phenotype over that we have revealed here, but this remains to be evaluated. 297 

Here we conservatively remove both these effects as we use the same homogenized batch of grape 298 

juice and examine the ability of differential populations of just one species to manipulate crop 299 

produce. Even so, we provide evidence that different natural sub-populations of S. cerevisiae 300 

deriving from different regions have the potential to significantly and differentially affect wine 301 

phenotype.  302 

 303 

The chemicals responsible for the differences between regions are not consistently from any 304 

particular class (Supplementary Table S4), and thus the microbially driven signals for difference in 305 

wine phenotype by region are complex, which makes intuitive sense. We attempted to evaluate the 306 

impact of how humans might perceive these differences in wine phenotypes by standardizing 307 

chemical concentrations with published OAVs32,33. This analysis again reported a significant effect of 308 

regionally differentiated microbes on wine phenotypes; however, OAVs are subjective to an extent, 309 

and interactions between chemicals that may lead to enhancement or masking of aromas are not 310 

accounted for here33. Ultimately the inclusion of sensory trials in these kinds of studies would add an 311 

extra layer to evaluate the extent that microbes play in the geographic differentiation of wine 312 

phenotypes. In addition this study only employs microbes that were determined to differ by region 313 

from just one year: how such population differentiation, and their resulting effects on crop 314 

phenotypes, changes across multiple years remains to be tested. 315 

 316 

Recently a handful of studies have shown that the communities and populations of microbes 317 

associated with vines and wines vary by region1,15-17, and these are the first demonstrations of 318 
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geographic variance in microbes associated with agriculture generally. Here we conduct a crucial 319 

follow-on to these observations: to test whether the genetic variance in microbial populations 320 

correlates with altered crop phenotypes. Geographic variance in crop physical and sensorial 321 

signatures are well described, and have important economic and consumer preference 322 

consequences10, but the drivers behind these differences have not been objectively evaluated and 323 

quantified. While we are not able to make any assertions regarding the temporal stability of these 324 

results, these data show there is a quantifiable microbial aspect to terroir, thus revealing the 325 

potential importance of microbial populations on the regional identity of wine, and may also extend 326 

to other important agricultural commodities. With a better understanding of the forces driving 327 

microbial population and community differentiation, food and agricultural sectors can develop 328 

systems to better control and manage these communities to help conserve the regional identity of 329 

products. More generally this finding indicates the importance of characterizing and understanding 330 

biodiversity and the services it may provide. Together this suggests that the long-term 331 

implementation of methods that maintain biodiversity may have tangible economic imperatives as 332 

well as being driven by a desire to employ agricultural practices that increase responsible 333 

environmental stewardship. 334 

 335 

 336 

Methods 337 

Genotype selection 338 

Six genotypes were selected from six major wine growing regions in NZ to represent the genetic 339 

diversity in each region (See Fig. 1 for geographic locations). Here we specifically employed 340 

genotypes previously isolated from spontaneous ferments17. We used Bayesian analyses to select 341 

one genotype from each region that harbored at least one allele that was unique to that region 342 
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while the remaining genotypes were selected to cover the diversity of ancestry profiles reported in 343 

each regional population as reported in Knight and Goddard (2015)17. 344 

 345 

Micro-fermentation 346 

The 126 ferments were conducted in three batches due to space constraints, and each batch 347 

contained one replicate of every treatment. Each ferment contained 230 mL of Marlborough (NZ) 348 

Sauvignon Blanc juice from the 2012 vintage (pH = 3.1, 22.1 °Brix) sterilized with 200 µL/L Dimethyl 349 

dicarbonate (DMDC) and with the SO2 level adjusted to 10 mg/L. Each S. cerevisiae genotype was 350 

grown up independently in liquid YPD (1% yeast extract, 2% peptone, 2 % glucose) prior to 351 

inoculation. The live cell concentration of each culture was determined using a haemocytometer 352 

with methylene blue staining, and cells were inoculated to give a final concentration of 2.5 x 106 353 

cells/mL. Regional co-ferments were performed by inoculating all six genotypes isolated from each 354 

region in equal proportions to the same final concentration of 2.5 x 106 cells/mL. Triplicate un-355 

inoculated controls were included in each batch to control for weight loss via evaporation and to 356 

identify potential contamination issues. This totaled 126 experimental ferments and 9 un-inoculated 357 

controls. Ferments were conducted at 15 °C with 150 rpm shaking in 250 mL Erlenmeyer flasks with 358 

air-locks. Fermentation progress was monitored by weighing the flasks daily30 and ferments were 359 

considered finished when the rate of weight loss was below 0.001 g/hr (after controlling for 360 

evaporation as calculated from the controls) or when they reached 30 days. Ferments were 361 

centrifuged at 6000 × g for 10 minutes to pellet cells and the supernatant was decanted and frozen 362 

at -20 °C until chemical analyses were performed.  363 

 364 

Blends 365 

After fermentation, regional blends were constructed from the single genotype ferments. Equal 366 

proportions of wine from ferments of each of the six genotypes from each region were 367 
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homogenized, creating triplicate regional blends for each of the six regions. This resulted in a total of 368 

144 wine samples for chemical analyses.  369 

 370 

Chemical analyses 371 

Final ethanol concentration, pH, residual sugar, volatile acidity (VA) and titratable acidity (TA) were 372 

quantified using FTIR (Fourier Transform Infrared Spectroscopy) with a FOSS WineScanTM FT120. The 373 

varietal thiols 3MH, 3MHA and 4MMP were quantified using an ethyl propiolate derivatization and 374 

analyzed on an Agilent 6890N gas chromatograph (Santa Clara, CA, USA) equipped with a 7683B 375 

automatic liquid sampler, a G2614A autosampler and a 593 mass selective detector as outlined in 376 

Herbst-Johnstone et al. (2013)43. Thirty-two esters, higher alcohols, terpenes, C6-alcohols and fatty 377 

acids were quantified simultaneously using a HS-SPME/GC-MS method outlined in Herbst-Johnstone 378 

et al. (2013a)44. Raw data was transformed with GCMSD Translator and peak integration was 379 

performed using MS Quantitative Analysis, both part of the Agilent MassHunter Workstation 380 

Software (Version B.04.00, Agilent Technologies). 381 

 382 

Statistical Analyses 383 

The sigmoid or altered Gompertz decay function described by Tronchoni et al. (2009)45 was used to 384 

build a model of fermentation kinetics for each ferment from the weight loss data to infer the lag 385 

phase. The data was fitted using the non-linear least squares method implemented in the R package 386 

nlstools46. Differences in the lag phase between batches were tested using a mixed linear model in 387 

JMP (Version 10) accounting for genotype and stuck ferments as random factors.  388 

 389 

Statistical tests for regional signal were performed on the chemical profiles for all datasets 390 

separately using a PERMANOVA approach as implemented in the R package vegan47. Jaccard 391 
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distances were used to calculate pairwise distances in the model and 10 000 permutations of the 392 

raw data constrained at the genotype level to account for the dependency between genotypes and 393 

their replicates, were performed for the hypothesis tests (F- tests). Full factorial models were 394 

implemented and subsequently reduced upon analysis of the results to obtain the model of best fit. 395 

Pairwise PERMANOVA analyses were performed between all combinations of regions for the single 396 

genotype ferments.  Since P-values can be misleading when multiple comparisons are performed34 397 

we follow the idea that more emphasis should be placed on the magnitude of effects35 thus the F-398 

statistics from these comparisons are used as a measure of the strength of evidence for a regional 399 

effect. Constrained Correspondence Analysis (CCA), implemented in the R package vegan, was used 400 

to visualize the data. This is analogous to a Principle Component Analysis in that transformations of 401 

the data are performed to provide components that allow the data to be visualized in 2-D plots. The 402 

CCA additionally partitions these components into a part that is explained by the specified linear 403 

model (in this case “region + batch”) and a part that is residual to that model. The plot that is 404 

produced rotates the data to the best orientation to observe the variation explained by the model. 405 

This method allows the PERMANOVA model to be built into the visualization, providing the most 406 

appropriate transformation and orientation of the data to visualize differences between the factors 407 

of interest. 408 

 409 

A Mantel test was performed in GenAlEx (Genetic Analyses in Excel) version 6.548,49 between a 410 

chemical distance matrix calculated using the Jaccard similarity coefficient, and the genetic distance 411 

matrix calculated using data from Knight and Goddard (2015)17. 412 

 413 

 414 

 415 
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Figure legends 566 

Figure 1: A map of the regions the tested genotypes of S. cerevisiae were isolated from and the 567 

strength of regional differentiation in the chemical profiles as indicated by F-statistics from pairwise 568 

PERMANOVA analyses (Supplementary Table S3). Wider lines indicate weaker regional distinctions in 569 

the chemical profiles produced (i.e. less distinct chemical profiles), while thinner lines indicate 570 

stronger regional distinction (i.e. more distinct chemical profiles). The inset indicates the portion of 571 

NZ highlighted in the larger map. The outline of the map of NZ was obtained 572 

from www.spraypaintstencils.com, where it is freely available, and all modifications were performed 573 

by the Authors in Microsoft Power Point. 574 

 575 

Figure 2: CCA of the 105 single genotype ferments analyzed. (a) All sample points colored by region. 576 

(b) Regional averages and 50 % ellipses.  577 

 578 

Figure 3: Visualization of the chemicals that individually explain more than 25 % of the regional 579 

variation as calculated by ANOVA analyses. (a) The direction and magnitude of all chemical loading 580 

vectors, with labels for the chemicals that reported a magnitude above 0.25. The blue circles 581 

represent the position of 0.1 and 0.25. (b) The chemical loading vectors in the CCA plot for those 582 

that reported an R2 value for region larger than 0.25 and an F-statistics larger than 5 in the ANOVA 583 

analyses (Supplementary Table S4). The blue circles represent the position of 0.1 and 0.25. (c) The 584 

same chemical loading vectors reported in b with respect to the regional centers of the chemical 585 

profiles.  586 
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Tables 590 

Table 1: Summary of all PERMANOVA analyses.  591 

Factors Df F Model R2 P-value 
(a) Single strain ferments only 
Region 5 2.056 0.100 0.001 *** 
Batch 2 3.687 0.072 0.001 *** 
Region*Batch 9 0.860 0.076 0.093 
Residuals 77  0.752  
Total 93  1  
(b) Single strain ferments only,  with chemicals standardised by OAV 
Region 5 2.758 0.127 0.002 ** 
Batch 2 4.302 0.079 0.001 *** 
Region*Batch 9 0.987 0.082 0.166 
Residuals 77  0.711  
Total 93  1  
(c) Single strain ferments with strains with mixed ancestry removed 
Region 5 3.176 0.198 0.006 ** 
Batch 2 3.092 0.077 0.005 ** 
Region*Batch 9 1.482 0.166 0.056
Residuals 45  0.560  
Total 61  1  
(d) Co-ferments and blends only, testing for effect of the type of ferment 
Type 1 2.425 0.061 0.014 * 
Batch 2 3.698 0.186 0.014 * 
Residuals 30 0.753
Total 33  1  
(e) All co-ferment samples only 
Region 5 1.555 0.346 0.073 
Batch 2 2.364 0.210 0.073 
Residuals 10  0.444  
Total 17 1
(f) All blend samples only 
Region  5 1.375 0.339 0.196
Batch 2 1.704 0.168 0.196 
Residuals 10  0.493  
Total 17  1  
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