39 research outputs found

    In vivo molecular imaging of chemokine receptor CXCR4 expression in patients with advanced multiple myeloma

    Get PDF
    CXCR4 is a G-protein-coupled receptor that mediates recruitment of blood cells toward its ligand SDF-1. In cancer, high CXCR4 expression is frequently associated with tumor dissemination and poor prognosis. We evaluated the novel CXCR4 probe [(68)Ga]Pentixafor for in vivo mapping of CXCR4 expression density in mice xenografted with human CXCR4-positive MM cell lines and patients with advanced MM by means of positron emission tomography (PET). [(68)Ga]Pentixafor PET provided images with excellent specificity and contrast. In 10 of 14 patients with advanced MM [(68)Ga]Pentixafor PET/CT scans revealed MM manifestations, whereas only nine of 14 standard [(18)F]fluorodeoxyglucose PET/CT scans were rated visually positive. Assessment of blood counts and standard CD34(+) flow cytometry did not reveal significant blood count changes associated with tracer application. Based on these highly encouraging data on clinical PET imaging of CXCR4 expression in a cohort of MM patients, we conclude that [(68)Ga]Pentixafor PET opens a broad field for clinical investigations on CXCR4 expression and for CXCR4-directed therapeutic approaches in MM and other diseases

    Selective CXCR4+ Cancer Cell Targeting and Potent Antineoplastic Effect by a Nanostructured Version of Recombinant Ricin

    Get PDF
    Altres ajuts: CIBER-BBN (project VENOM4CANCER) granted to A.V. The authors are also indebted to the Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) that is an initiative funded by the VI National R&D&I Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions and financed by the Instituto de Salud Carlos III, with assistance from the European Regional Development Fund. Protein production was partially performed by the ICTS "NANBIOSIS," more specifically by the Protein Production Platform of CIBER-BBN/ IBB (http://www.nanbiosis.es/unit/u1-protein-production-platform-ppp/) and the nanoparticle size analysis by the Biomaterial Processing and Nanostructuring Unit. The authors are also indebted to SCAC (UAB) for cell culture facilities and assistance. R.D. received an overseas predoctoral fellowship from Conacyt (Gobierno de México, 2016). N.S. was supported by a predoctoral fellowship from the Government of Navarra, V.P. received a postdoctoral fellowship from the Spanish Foundation of Hematology and Hemotherapy (FEHH), and U.U. a Sara Borrell postdoctoral fellowship from ISCIII. A.V. holds an ICREA ACADEMIA award.Under the unmet need of efficient tumor-targeting drugs for oncology, a recombinant version of the plant toxin ricin (the modular protein T22-mRTA-H6) is engineered to self-assemble as protein-only, CXCR4-targeted nanoparticles. The soluble version of the construct self-organizes as regular 11 nm planar entities that are highly cytotoxic in cultured CXCR4 cancer cells upon short time exposure, with a determined IC50 in the nanomolar order of magnitude. The chemical inhibition of CXCR4 binding sites in exposed cells results in a dramatic reduction of the cytotoxic potency, proving the receptor-dependent mechanism of cytotoxicity. The insoluble version of T22-mRTA-H6 is, contrarily, moderately active, indicating that free, nanostructured protein is the optimal drug form. In animal models of acute myeloid leukemia, T22-mRTA-H6 nanoparticles show an impressive and highly selective therapeutic effect, dramatically reducing the leukemia cells affectation of clinically relevant organs. Functionalized T22-mRTA-H6 nanoparticles are then promising prototypes of chemically homogeneous, highly potent antitumor nanostructured toxins for precise oncotherapies based on self-mediated intracellular drug delivery

    CXCR4-directed imaging in solid tumors

    Get PDF
    Despite histological evidence in various solid tumor entities, available experience with CXCR4-directed diagnostics and endoradiotherapy mainly focuses on hematologic diseases. With the goal of expanding the application of CXCR4 theranostics to solid tumors, we aimed to elucidate the feasibility of CXCR4-targeted imaging in a variety of such neoplasms. Methods: Nineteen patients with newly diagnosed, treatment-naïve solid tumors including pancreatic adenocarcinoma or neuroendocrine tumor, cholangiocarcinoma, hepatocellular carcinoma, renal cell carcinoma, ovarian cancer, and prostate cancer underwent [68^{68}Ga]Pentixafor PET/CT. CXCR4-mediated uptake was assessed both visually and semi-quantitatively by evaluation of maximum standardized uptake values (SUVmax_{max}) of both primary tumors and metastases. With physiologic liver uptake as reference, tumor-to-background ratios (TBR) were calculated. [68^{68}Ga]Pentixafor findings were further compared to immunohistochemistry and [18^{18}F]FDG PET/CT. Results: On [68^{68}Ga]Pentixafor PET/CT, 10/19 (52.6%) primary tumors were visually detectable with a median SUVmax of 5.4 (range, 1.7–16.0) and a median TBR of 2.6 (range, 0.8–7.4), respectively. The highest level of radiotracer uptake was identified in a patient with cholangiocarcinoma (SUVmax, 16.0; TBR, 7.4). The relatively low uptake on [68^{68}Ga]Pentixafor was also noted in metastases, exhibiting a median SUVmax of 4.5 (range, 2.3–8.8; TBR, 1.7; range, 1.0–4.1). A good correlation between uptake on [68^{68}Ga]Pentixafor and histological derived CXCR4 expression was noted (R = 0.62, P < 0.05). In the 3 patients in whom [18^{18}F]FDG PET/CT was available, [68^{68}Ga]Pentixafor exhibited lower uptake in all lesions. Conclusions: In this cohort of newly diagnosed, treatment-naïve patients with solid malignancies, CXCR4 expression as detected by [68^{68}Ga]Pentixafor-PET/CT and immunohistochemistry was rather moderate. Thus, CXCR4-directed imaging may not play a major role in the management of solid tumors in the majority of patients

    Disclosing the CXCR4 expression in lymphoproliferative diseases by targeted molecular imaging.

    No full text
    Chemokine ligand-receptor interactions play a pivotal role in cell attraction and cellular trafficking, both in normal tissue homeostasis and in disease. In cancer, chemokine receptor-4 (CXCR4) expression is an adverse prognostic factor. Early clinical studies suggest that targeting CXCR4 with suitable high-affinity antagonists might be a novel means for therapy. In addition to the preclinical evaluation of [68Ga]Pentixafor in mice bearing human lymphoma xenografts as an exemplary CXCR4-expressing tumor entity, we report on the first clinical applications of [68Ga]Pentixafor-Positron Emission Tomography as a powerful method for CXCR4 imaging in cancer patients. [68Ga]Pentixafor binds with high affinity and selectivity to human CXCR4 and exhibits a favorable dosimetry. [68Ga]Pentixafor-PET provides images with excellent specificity and contrast. This non-invasive imaging technology for quantitative assessment of CXCR4 expression allows to further elucidate the role of CXCR4/CXCL12 ligand interaction in the pathogenesis and treatment of cancer, cardiovascular diseases and autoimmune and inflammatory disorders

    Targeted positron emission tomography imaging of CXCR4 expression in patients with acute myeloid leukemia

    Get PDF
    Acute myeloid leukemia originates from leukemia-initiating cells that reside in the protective bone marrow niche. CXCR4/CXCL12 interaction is crucially involved in recruitment and retention of leukemia-initiating cells within this niche. Various drugs targeting this pathway have entered clinical trials. To evaluate CXCR4 imaging in acute myeloid leukemia, we first tested CXCR4 expression in patient-derived primary blasts. Flow cytometry revealed that high blast counts in patients with acute myeloid leukemia correlate with high CXCR4 expression. The wide range of CXCR4 surface expression in patients was reflected in cell lines of acute myeloid leukemia. Next, we evaluated the CXCR4-specific peptide Pentixafor by positron emission tomography imaging in mice harboring CXCR4 positive and CXCR4 negative leukemia xenografts, and in 10 patients with active disease. [68Ga] Pentixafor-positron emission tomography showed specific measurable disease in murine CXCR4 positive xenografts, but not when CXCR4 was knocked out with CRISPR/Cas9 gene editing. Five of 10 patients showed tracer uptake correlating well with leukemia infiltration assessed by magnetic resonance imaging. The mean maximal standard uptake value was significantly higher in visually CXCR4 positive patients compared to CXCR4 negative patients. In summary, in vivo molecular CXCR4 imaging by means of positron emission tomography is feasible in acute myeloid leukemia. These data provide a framework for future diagnostic and theranostic approaches targeting the CXCR4/CXCL12-defined leukemia-initiating cell niche

    Molecular imaging for early prediction of response to Sorafenib treatment in sarcoma.

    No full text
    The role of [(18)F]fluorodeoxyglucose ([(18)F]FDG) PET in staging of sarcoma is well established. The aim of this preclinical study was to compare [(18)F]fluorothymidine ([(18)F]FLT) PET to [(18)F]FDG PET regarding early metabolic changes of sarcoma in the course of targeted cancer therapy. SCID mice bearing sarcoma A673 xenotransplants were used for investigation of tumor response after treatment with the multikinase inhibitor Sorafenib. [(18)F]FLT and/or [(18)F]FDG-PET were performed prior to and early after initiation of treatment. Tumoral uptake (% Injected Dose per gram (%ID/g) of [(18)F]FLT-PET was compared to [(18)F]FDG-PET. Results were correlated with histopathology and in vitro data including cellular uptake, cell cycle-related protein expression, cell cycle distribution and apoptosis. In vitro experiments showed that A673 cells were sensitive to Sorafenib. In vivo, tumor growth was inhibited in comparison to a 4-fold increase of the tumor volume in control mice. Using [(18)F]FDG as tracer, a moderate reduction in tracer uptake (n=15, mean relative %ID/g 74%, range 35%-121%, p=0.03) was observed. The decrease in %ID/g using [(18)F]FLT-PET was significantly higher (p=0.003). The mean relative %ID/g in [(18)F]FLT uptake on day + 5 was significantly reduced to 54% compared to baseline (n=15, range 24%-125%, SD=29%). The PET analysis 24 hr after therapy showed a significant reduction of the mean [(18)F]FLT-%ID/g (p=0.04). The reduction of %ID/g on day + 1 in [(18)F]FDG-PET was not statistically significant (p=0.99). In conclusion, both [(18)F]FDG- and [(18)F]FLT-PET were able to predict response to Sorafenib treatment. In contrast to [(18)F]FDG-PET, [(18)F]FLT-PET was more predictive for very early response to treatment
    corecore