10 research outputs found
Recommended from our members
The role of herbivorous insects and pathogens in the regeneration dynamics of Guazuma ulmifolia in Panama
A significant proportion of the mortality of rainforest trees occurs during early life stages (seeds and seedlings), but mortality agents are often elusive. Our study investigated the role of herbivorous insects and pathogens in the early regeneration dynamics of Guazuma ulmifolia (Malvaceae), an important tree species in agroforestry in Central America. We reared pre-dispersal insect seed predators from G. ulmifolia seeds in Panama. We also carried out an experiment, controlling insects and pathogens using insecticide and/or fungicide treatments, as well as seed density, and compared survivorship of G. ulmifolia seeds and seedlings among treatments and relative to untreated control plots. We observed (1) high pre-dispersal attack (92%) of the fruits of G. ulmifolia, mostly by anobiine and bruchine beetles; (2) negligible post-dispersal attack of isolated seeds by insects and pathogens; (3) slow growth and high mortality (> 95%) of seedlings after 14 weeks; (4) low insect damage on seedlings; and (5) a strong positive correlation between seedling mortality and rainfall. We conclude that for G. ulmifolia at our study site the pre-dispersal seed stage is by far the most sensitive stage to insects and that their influence on seedling mortality appears to be slight as compared to that of inclement weather. Thus, the regeneration of this important tree species may depend on effective primary dispersal of seeds by vertebrates (before most of the seed crop is lost to insects), conditioned by suitable conditions in which the seedlings can grow
On line reference trajectory adaptation for the control of a planar biped
International audienc
Recommended from our members
High specialization and limited structural change in plantâherbivore networks along a successional chronosequence in tropical montane forest
Secondary succession is wellâunderstood, to the point of being predictable for plant communities, but the successional changes in plantâherbivore interactions remains poorly explored. This is particularly true for tropical forests despite the increasing importance of early successional stages in tropical landscapes. Deriving expectations from successional theory, we examine properties of plantâherbivore interaction networks while accounting for host phylogenetic structure along a succession chronosequence in montane rainforest in Papua New Guinea. We present one of the most comprehensive successional investigations of interaction networks, equating to > 40 person years of field sampling, and one of the few focused on montane tropical forests. We use a series of nine 0.2 ha forest plots across young secondary, mature secondary and primary montane forest, sampled almost completely for woody plants and larval leaf chewers (Lepidoptera) using forest felling. These networks comprised of 12 357 plantâherbivore interactions and were analysed using quantitative network metrics, a phylogenetically controlled hostâuse index and a qualitative network beta diversity measure. Network structural changes were low and specialisation metrics surprisingly similar throughout succession, despite high network beta diversity. Herbivore abundance was greatest in the earliest stages, and hosts here had more speciesârich herbivore assemblages, presumably reflecting higher palatability due to lower defensive investment. All herbivore communities were highly specialised, using a phylogenetically narrow set of hosts, while host phylogenetic diversity itself decreased throughout the chronosequence. Relatively high phylogenetic diversity, and thus high diversity of plant defenses, in early succession forest may result in herbivores feeding on fewer hosts than expected. Successional theory, derived primarily from temperate systems, is limited in predicting tropical hostâherbivore interactions. All succession stages harbour diverse and unique interaction networks, which together with largely similar network structures and consistent host use patterns, suggests general rules of assembly may apply to these systems
Abundance, occurrence and time series: long-term monitoring of social insects in a tropical rainforest
The magnitude of worldwide insect decline is hotly debated, with multiple examples of stable or increasing insect populations. In addition, time series data for tropical insects are scarce, notably in rainforests where insect diversity is poorly known but reaches a peak. Despite social insects (ants, termites, bees and allies) being key organisms in these habitats, long-term monitoring data for these groups are crucially lacking. For many of these insects, the difficulty of locating nests in rainforests could be one reason. In this context, species occurrence in samples is often used as a surrogate for abundance to evaluate species distribution in space/time, but the loss of information is difficult to assess. In a tropical rainforest in Panama, we employed various sampling methods to examine the time series of seven insect assemblages with differing degrees of sociality: termite workers and soldiers, termite alates, bess beetles, litter ant workers, army ant alates, orchid bees, and nocturnal sweat bees. We used five community variables and six models related to occurrence and abundance, to test for significant trends in assemblages over a 13-year period (2009â2021). While assemblages of bess beetles increased, those of termite workers and soldiers, army ant alates, and orchid bees remained relatively stable. Termite alate, litter ant worker, and nocturnal bee assemblages showed signs of decline, demonstrating the need for monitoring distinct assemblages. Significant trends in generalized additive mixed models (GAMM) were observed in three out of five assemblages that could be tested. Our study indicates that trends in assemblages may be more informatively reported with abundance than with occurrence. We recommend (1) monitoring multiple insect assemblages as ecological indicators responsible for diverse ecosystem services; and (2) reporting species richness, changes in faunal composition, occurrence, and, when possible, using time-explicit analyses (such as GAMM models) for evaluating population trends over time
Recommended from our members
Host specificity and interaction networks of insects feeding on seeds and fruits in tropical rainforests
In the tropics, antagonistic seed predation networks may have different properties than mutualistic pollination and seed dispersal networks, but the former have been considerably less studied. We tested whether the structure of antagonistic tripartite networks composed of host plants, insects developing within seeds and fruits, and their insect parasitoids could be predicted from plant phylogenetic distance and plant traits. We considered subsets of the networks (âsubnetworks') at three rainforest locations (Panama, Thailand, Papua New Guinea), based on insect families, plant families or plant functional groups. We recorded 3197 interactions and observed a low percentage of realized interactions, especially in Panama, where insect host specificity was higher than in Thailand or New Guinea. Several factors may explain this, including insect faunal composition, incidence of dry fruits, high fruit production and high occurrence of Fabaceae at the Panamanian site. Host specificity was greater among seed-eaters than pulp-eaters and for insects feeding on dry fruits as opposed to insects feeding on fleshy fruits. Plant species richness within plant families did not influence insect host specificity, but site characteristics may be important in this regard. Most subnetworks were extremely specialized, such as those including Tortricidae and Bruchinae in Panama. Plant phylogenetic distance, plant basal area and plant traits (fruit length, number of seeds per fruit) had important effects on several network statistics in regressions weighted by sampling effort. A path analysis revealed a weak direct influence of plant phylogenetic distance on parasitoid richness, indicating limited support for the ânasty host hypothesis'. Our study emphasizes the duality between seed dispersal and seed predation networks in the tropics, as key plant species differ and host specificity tends to be low in the former and higher in the latter. This underlines the need to study both types of networks for sound practices of forest regeneration and conservation
Quantitative assessment of plant-arthropod interactions in forest canopies: A plot-based approach.
Research on canopy arthropods has progressed from species inventories to the study of their interactions and networks, enhancing our understanding of how hyper-diverse communities are maintained. Previous studies often focused on sampling individual tree species, individual trees or their parts. We argue that such selective sampling is not ideal when analyzing interaction network structure, and may lead to erroneous conclusions. We developed practical and reproducible sampling guidelines for the plot-based analysis of arthropod interaction networks in forest canopies. Our sampling protocol focused on insect herbivores (leaf-chewing insect larvae, miners and gallers) and non-flying invertebrate predators (spiders and ants). We quantitatively sampled the focal arthropods from felled trees, or from trees accessed by canopy cranes or cherry pickers in 53 0.1 ha forest plots in five biogeographic regions, comprising 6,280 trees in total. All three methods required a similar sampling effort and provided good foliage accessibility. Furthermore, we compared interaction networks derived from plot-based data to interaction networks derived from simulated non-plot-based data focusing either on common tree species or a representative selection of tree families. All types of non-plot-based data showed highly biased network structure towards higher connectance, higher web asymmetry, and higher nestedness temperature when compared with plot-based data. Furthermore, some types of non-plot-based data showed biased diversity of the associated herbivore species and specificity of their interactions. Plot-based sampling thus appears to be the most rigorous approach for reconstructing realistic, quantitative plant-arthropod interaction networks that are comparable across sites and regions. Studies of plant interactions have greatly benefited from a plot-based approach and we argue that studies of arthropod interactions would benefit in the same way. We conclude that plot-based studies on canopy arthropods would yield important insights into the processes of interaction network assembly and dynamics, which could be maximised via a coordinated network of plot-based study sites
Data from: The global distribution of diet breadth in insect herbivores
Understanding variation in resource specialization is important for progress on issues that include coevolution, community assembly, ecosystem processes, and the latitudinal gradient of species richness. Herbivorous insects are useful models for studying resource specialization, and the interaction between plants and herbivorous insects is one of the most common and consequential ecological associations on the planet. However, uncertainty persists regarding fundamental features of herbivore diet breadth, including its relationship to latitude and plant species richness. Here we use a global dataset to investigate host range for over 7,500 insect herbivore species covering a wide taxonomic breadth and interacting with more than 2,000 species of plants in 165 families. We ask whether relatively specialized and generalized herbivores represent a dichotomy, rather than a continuum from few to many host families and species attacked, and whether diet breadth changes with increasing plant species richness towards the tropics. Across geographic regions and taxonomic subsets of the data, we find that the distribution of diet breadth is fit well by a discrete, truncated Pareto power law characterized by the predominance of specialized herbivores and a long, thin tail of more generalized species. Both the taxonomic and phylogenetic distributions of diet breadth shift globally with latitude, consistent with a higher frequency of specialized insects in tropical regions. We also find that more diverse lineages of plants support assemblages of relatively more specialized herbivores, and that the global distribution of plant diversity contributes to, but does not fully explain, the latitudinal gradient in insect herbivore specialization