148 research outputs found

    A Study of the Diverse T Dwarf Population Revealed by WISE

    Full text link
    We report the discovery of 87 new T dwarfs uncovered with the Wide-field Infrared Survey Explorer (WISE) and three brown dwarfs with extremely red near-infrared colors that exhibit characteristics of both L and T dwarfs. Two of the new T dwarfs are likely binaries with L7+/-1 primaries and mid-type T secondaries. In addition, our follow-up program has confirmed 10 previously identified T dwarfs and four photometrically-selected L and T dwarf candidates in the literature. This sample, along with the previous WISE discoveries, triples the number of known brown dwarfs with spectral types later than T5. Using the WISE All-Sky Source Catalog we present updated color-color and color-type diagrams for all the WISE-discovered T and Y dwarfs. Near-infrared spectra of the new discoveries are presented, along with spectral classifications. To accommodate later T dwarfs we have modified the integrated flux method of determining spectral indices to instead use the median flux. Furthermore, a newly defined J-narrow index differentiates the early-type Y dwarfs from late-type T dwarfs based on the J-band continuum slope. The K/J indices for this expanded sample show that 32% of late-type T dwarfs have suppressed K-band flux and are blue relative to the spectral standards, while only 11% are redder than the standards. Comparison of the Y/J and K/J index to models suggests diverse atmospheric conditions and supports the possible re-emergence of clouds after the L/T transition. We also discuss peculiar brown dwarfs and candidates that were found not to be substellar, including two Young Stellar Objects and two Active Galactic Nuclei. The coolest WISE-discovered brown dwarfs are the closest of their type and will remain the only sample of their kind for many years to come.Comment: Accepted to ApJS on 15 January 2013; 99 pages in preprint format, 30 figures, 12 table

    A comparative study of fragment screening methods on the p38α kinase: new methods, new insights

    Get PDF
    The stress-activated kinase p38α was used to evaluate a fragment-based drug discovery approach using the BioFocus fragment library. Compounds were screened by surface plasmon resonance (SPR) on a Biacore(™) T100 against p38α and two selectivity targets. A sub-set of our library was the focus of detailed follow-up analyses that included hit confirmation, affinity determination on 24 confirmed, selective hits and competition assays of these hits with respect to a known ATP binding site inhibitor. In addition, functional activity against p38α was assessed in a biochemical assay using a mobility shift platform (LC3000, Caliper LifeSciences). A selection of fragments was also evaluated using fluorescence lifetime (FLEXYTE(™)) and microscale thermophoresis (Nanotemper) technologies. A good correlation between the data for the different assays was found. Crystal structures were solved for four of the small molecules complexed to p38α. Interestingly, as determined both by X-ray analysis and SPR competition experiments, three of the complexes involved the fragment at the ATP binding site, while the fourth compound bound in a distal site that may offer potential as a novel drug target site. A first round of optimization around the remotely bound fragment has led to the identification of a series of triazole-containing compounds. This approach could form the basis for developing novel and active p38α inhibitors. More broadly, it illustrates the power of combining a range of biophysical and biochemical techniques to the discovery of fragments that facilitate the development of novel modulators of kinase and other drug targets. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s10822-011-9454-9) contains supplementary material, which is available to authorized users

    Genomic tailoring of autogenous poultry vaccines to reduce Campylobacter from farm to fork

    Get PDF
    Campylobacter is a leading cause of food-borne gastroenteritis worldwide, linked to the consumption of contaminated poultry meat. Targeting this pathogen at source, vaccines for poultry can provide short-term caecal reductions in Campylobacter numbers in the chicken intestine. However, this approach is unlikely to reduce Campylobacter in the food chain or human incidence. This is likely as vaccines typically target only a subset of the high genomic strain diversity circulating among chicken flocks, and rapid evolution diminishes vaccine efficacy over time. To address this, we used a genomic approach to develop a whole-cell autogenous vaccine targeting isolates harbouring genes linked to survival outside of the host. We hyper-immunised a whole major UK breeder farm to passively target offspring colonisation using maternally-derived antibody. Monitoring progeny, broiler flocks revealed a near-complete shift in the post-vaccination Campylobacter population with an ~50% reduction in isolates harbouring extra-intestinal survival genes and a significant reduction of Campylobacter cells surviving on the surface of meat. Based on these findings, we developed a logistic regression model that predicted that vaccine efficacy could be extended to target 65% of a population of clinically relevant strains. Immuno-manipulation of poultry microbiomes towards less harmful commensal isolates by competitive exclusion, has major potential for reducing pathogens in the food production chain

    Identifying Currents in the Gene Pool for Bacterial Populations Using an Integrative Approach

    Get PDF
    The evolution of bacterial populations has recently become considerably better understood due to large-scale sequencing of population samples. It has become clear that DNA sequences from a multitude of genes, as well as a broad sample coverage of a target population, are needed to obtain a relatively unbiased view of its genetic structure and the patterns of ancestry connected to the strains. However, the traditional statistical methods for evolutionary inference, such as phylogenetic analysis, are associated with several difficulties under such an extensive sampling scenario, in particular when a considerable amount of recombination is anticipated to have taken place. To meet the needs of large-scale analyses of population structure for bacteria, we introduce here several statistical tools for the detection and representation of recombination between populations. Also, we introduce a model-based description of the shape of a population in sequence space, in terms of its molecular variability and affinity towards other populations. Extensive real data from the genus Neisseria are utilized to demonstrate the potential of an approach where these population genetic tools are combined with an phylogenetic analysis. The statistical tools introduced here are freely available in BAPS 5.2 software, which can be downloaded from http://web.abo.fi/fak/mnf/mate/jc/software/baps.html

    Critical Role of Constitutive Type I Interferon Response in Bronchial Epithelial Cell to Influenza Infection

    Get PDF
    Innate antiviral responses in bronchial epithelial cells (BECs) provide the first line of defense against respiratory viral infection and the effectiveness of this response is critically dependent on the type I interferons (IFNs). However the importance of the antiviral responses in BECs during influenza infection is not well understood. We profiled the innate immune response to infection with H3N2 and H5N1 virus using Calu-3 cells and primary BECs to model proximal airway cells. The susceptibility of BECs to influenza infection was not solely dependent on the sialic acid-bearing glycoprotein, and antiviral responses that occurred after viral endocytosis was more important in limiting viral replication. The early antiviral response and apoptosis correlated with the ability to limit viral replication. Both viruses reduced RIG-I associated antiviral responses and subsequent induction of IFN-β. However it was found that there was constitutive release of IFN-β by BECs and this was critical in inducing late antiviral signaling via type I IFN receptors, and was crucial in limiting viral infection. This study characterizes anti-influenza virus responses in airway epithelial cells and shows that constitutive IFN-β release plays a more important role in initiating protective late IFN-stimulated responses during human influenza infection in bronchial epithelial cells

    Protocol for the development of a multidisciplinary clinical practice guideline for the care of patients with chronic subdural haematoma

    Get PDF
    Introduction: A common neurosurgical condition, chronic subdural haematoma (cSDH) typically affects older people with other underlying health conditions. The care of this potentially vulnerable cohort is often, however, fragmented and suboptimal. In other complex conditions, multidisciplinary guidelines have transformed patient experience and outcomes, but no such framework exists for cSDH. This paper outlines a protocol to develop the first comprehensive multidisciplinary guideline from diagnosis to long-term recovery with cSDH. Methods: The project will be guided by a steering group of key stakeholders and professional organisations and will feature patient and public involvement. Multidisciplinary thematic working groups will examine key aspects of care to formulate appropriate, patient-centered research questions, targeted with evidence review using the GRADE framework. The working groups will then formulate draft clinical recommendations to be used in a modified Delphi process to build consensus on guideline contents. Conclusions: We present a protocol for the development of a multidisciplinary guideline to inform the care of patients with a cSDH, developed by cross-disciplinary working groups and arrived at through a consensus-building process, including a modified online Delphi.</p

    Genetic effects on gene expression across human tissues

    Get PDF
    Characterization of the molecular function of the human genome and its variation across individuals is essential for identifying the cellular mechanisms that underlie human genetic traits and diseases. The Genotype-Tissue Expression (GTEx) project aims to characterize variation in gene expression levels across individuals and diverse tissues of the human body, many of which are not easily accessible. Here we describe genetic effects on gene expression levels across 44 human tissues. We find that local genetic variation affects gene expression levels for the majority of genes, and we further identify inter-chromosomal genetic effects for 93 genes and 112 loci. On the basis of the identified genetic effects, we characterize patterns of tissue specificity, compare local and distal effects, and evaluate the functional properties of the genetic effects. We also demonstrate that multi-tissue, multi-individual data can be used to identify genes and pathways affected by human disease-associated variation, enabling a mechanistic interpretation of gene regulation and the genetic basis of diseas
    corecore