1,115 research outputs found

    Benefit-Cost Analysis of FEMA Hazard Mitigation Grants

    Get PDF
    Mitigation ameliorates the impact of natural hazards on communities by reducing loss of life and injury, property and environmental damage, and social and economic disruption. The potential to reduce these losses brings many benefits, but every mitigation activity has a cost that must be considered in our world of limited resources. In principle benefit-cost analysis (BCA) can be used to assess a mitigation activity’s expected net benefits (discounted future benefits less discounted costs), but in practice this often proves difficult. This paper reports on a study that refined BCA methodologies and applied them to a national statistical sample of FEMA mitigation activities over a ten-year period for earthquake, flood, and wind hazards. The results indicate that the overall benefit-cost ratio for FEMA mitigation grants is about 4 to 1, though the ratio varies according to hazard and mitigation type.

    Enhanced ferroelectric and piezoelectric properties of BCT-BZT at the morphotropic phase boundary driven by the coexistence of phases with different symmetries

    Get PDF
    The discovery of lead-free piezoelectric materials is crucial for future information and energy storage applications. Enhanced piezoelectric and other physical properties are commonly observed near the morphotropic phase boundary (MPB) composition of ferroelectric solid solutions. The (1-x)Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 (BZT-xBCT) system exhibits a large electromechanical response around its MPB region at x=0.5. We report experimental and theoretical results of BZT-xBCT over a wide composition range (0.3=x=1.0). X-ray diffraction and Raman spectroscopy studies indicate a composition-induced structural phase transition from a rhombohedral (R3m) phase at x=0.4 to a tetragonal (P4mm) phase at x=0.6 through a multiphase coexistence region at 0.45=x=0.55 involving orthorhombic + tetragonal (Amm2+P4mm) phases. First-principles calculations elucidate the phase competition in the coexistence region. The critical composition (x= 0.5) displays enhanced dielectric, ferroelectric and piezoelectric properties, where notably d33~ 320 pC/N. This work provides clear evidence of Amm2+P4mm crystallographic phases in the MPB region, which is responsible for the improved functional properties.C. C. acknowledges support from the Spanish Ministry of Science, Innovation, and Universities under the “Ramón y Cajal” fellowship RYC2018-024947-I.Peer ReviewedPostprint (author's final draft

    Nanomechanical Resonators: Toward Atomic Scale

    Get PDF
    The quest for realizing and manipulating ever smaller man-made movable structures and dynamical machines has spurred tremendous endeavors, led to important discoveries, and inspired researchers to venture to previously unexplored grounds. Scientific feats and technological milestones of miniaturization of mechanical structures have been widely accomplished by advances in machining and sculpturing ever shrinking features out of bulk materials such as silicon. With the flourishing multidisciplinary field of low-dimensional nanomaterials, including one-dimensional (1D) nanowires/nanotubes and two-dimensional (2D) atomic layers such as graphene/ phosphorene, growing interests and sustained effort have been devoted to creating mechanical devices toward the ultimate limit of miniaturization--genuinely down to the molecular or even atomic scale. These ultrasmall movable structures, particularly nanomechanical resonators that exploit the vibratory motion in these 1D and 2D nano-to-atomic-scale structures, offer exceptional device-level attributes, such as ultralow mass, ultrawide frequency tuning range, broad dynamic range, and ultralow power consumption, thus holding strong promises for both fundamental studies and engineering applications. In this Review, we offer a comprehensive overview and summary of this vibrant field, present the state-of-the-art devices and evaluate their specifications and performance, outline important achievements, and postulate future directions for studying these miniscule yet intriguing molecular-scale machines
    • …
    corecore