873 research outputs found

    Formylpeptide receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    The formylpeptide receptors (nomenclature agreed by the NC-IUPHAR Subcommittee on the formylpeptide receptor family [185]) respond to exogenous ligands such as the bacterial product fMet-Leu-Phe (fMLP) and endogenous ligands such as annexin I , cathepsin G, amyloid β42, serum amyloid A and spinorphin, derived from β-haemoglobin

    Formylpeptide receptors in GtoPdb v.2021.2

    Get PDF
    The formylpeptide receptors (nomenclature agreed by the NC-IUPHAR Subcommittee on the formylpeptide receptor family [196]) respond to exogenous ligands such as the bacterial product fMet-Leu-Phe (fMLP) and endogenous ligands such as lipoxin A4 (LXA4), 15-epi-lipoxin A4, annexin I , cathepsin G, amyloid β42, serum amyloid A and spinorphin, derived from β-haemoglobin. FPR1 also serves as a plague receptor for selective destruction of human immune cells by Y. pestis [135]. The FPR1/2 agonists 'compound 17b' and 'compound 43' have shown cardiac protective functions [149, 64]

    Tracing HIV-1 transmission: envelope traits of HIV-1 transmitter and recipient pairs.

    Get PDF
    Mucosal HIV-1 transmission predominantly results in a single transmitted/founder (T/F) virus establishing infection in the new host despite the generally high genetic diversity of the transmitter virus population. To what extent HIV-1 transmission is a stochastic process or driven by selective forces that allow T/F viruses best to overcome bottlenecks in transmission has not been conclusively resolved. Building on prior investigations that suggest HIV-1 envelope (Env) features to contribute in the selection process during transmission, we compared phenotypic virus characteristics of nine HIV-1 subtype B transmission pairs, six men who have sex with men and three male-to-female transmission pairs. All recipients were identified early in acute infection and harbored based on extensive sequencing analysis a single T/F virus allowing a controlled analysis of virus properties in matched transmission pairs. Recipient and transmitter viruses from the closest time point to transmission showed no signs of selection for specific Env modifications such as variable loop length and glycosylation. Recipient viruses were resistant to circulating plasma antibodies of the transmitter and also showed no altered sensitivity to a large panel of entry inhibitors and neutralizing antibodies. The recipient virus did not consistently differ from the transmitter virus in terms of entry kinetics, cell-cell transmission and replicative capacity in primary cells. Our paired analysis revealed a higher sensitivity of several recipient virus isolates to interferon-α (IFNα) which suggests that resistance to IFNα cannot be a general driving force in T/F establishment. With the exception of increased IFNα sensitivity, none of the phenotypic virus properties we investigated clearly distinguished T/F viruses from their matched transmitter viruses supporting the notion that at least in subtype B infection HIV-1 transmission is to a considerable extent stochastic

    Kinetics and 28-day test-retest repeatability and reproducibility of [C-11]UCB-J PET brain imaging

    Get PDF
    [C-11]UCB-J is a novel radioligand that binds to synaptic vesicle glycoprotein 2A (SV2A). The main objective of this study was to determine the 28-day test-retest repeatability (TRT) of quantitative [C-11]UCB-J brain positron emission tomography (PET) imaging in Alzheimer's disease (AD) patients and healthy controls (HCs). Nine HCs and eight AD patients underwent two 60 min dynamic [C-11]UCB-J PET scans with arterial sampling with an interval of 28 days. The optimal tracer kinetic model was assessed using the Akaike criteria (AIC). Micro-/macro-parameters such as tracer delivery (K-1) and volume of distribution (V-T) were estimated using the optimal model. Data were also analysed for simplified reference tissue model (SRTM) with centrum semi-ovale (white matter) as reference region. Based on AIC, both 1T2k_V-B and 2T4k_V-B described the [C-11]UCB-J kinetics equally well. Analysis showed that whole-brain grey matter TRT for V-T, DVR and SRTM BPND were -2.2% +/- 8.5, 0.4% +/- 12.0 and -8.0% +/- 10.2, averaged over all subjects. [C-11]UCB-J kinetics can be well described by a 1T2k_V-B model, and a 60 min scan duration was sufficient to obtain reliable estimates for both plasma input and reference tissue models. TRT for V-T, DVR and BPND wa

    Self-powered wireless carbohydrate/oxygen sensitive biodevice based on radio signal transmission

    Get PDF
    peer-reviewedHere for the first time, we detail self-contained (wireless and self-powered) biodevices with wireless signal transmission. Specifically, we demonstrate the operation of self-sustained carbohydrate and oxygen sensitive biodevices, consisting of a wireless electronic unit, radio transmitter and separate sensing bioelectrodes, supplied with electrical energy from a combined multi-enzyme fuel cell generating sufficient current at required voltage to power the electronics. A carbohydrate/oxygen enzymatic fuel cell was assembled by comparing the performance of a range of different bioelectrodes followed by selection of the most suitable, stable combination. Carbohydrates (viz. lactose for the demonstration) and oxygen were also chosen as bioanalytes, being important biomarkers, to demonstrate the operation of the self-contained biosensing device, employing enzyme-modified bioelectrodes to enable the actual sensing. A wireless electronic unit, consisting of a micropotentiostat, an energy harvesting module (voltage amplifier together with a capacitor), and a radio microchip, were designed to enable the biofuel cell to be used as a power supply for managing the sensing devices and for wireless data transmission. The electronic system used required current and voltages greater than 44 mu A and 0.57 V, respectively to operate; which the biofuel cell was capable of providing, when placed in a carbohydrate and oxygen containing buffer. In addition, a USB based receiver and computer software were employed for proof-of concept tests of the developed biodevices. Operation of bench-top prototypes was demonstrated in buffers containing different concentrations of the analytes, showcasing that the variation in response of both carbohydrate and oxygen biosensors could be monitored wirelessly in real-time as analyte concentrations in buffers were changed, using only an enzymatic fuel cell as a power supply.PUBLISHEDpeer-reviewe

    Validation and test-retest repeatability performance of parametric methods for [11C]UCB-J PET

    Get PDF
    [(11)C]UCB-J is a PET radioligand that binds to the presynaptic vesicle glycoprotein 2A. Therefore, [(11)C]UCB-J PET may serve as an in vivo marker of synaptic integrity. The main objective of this study was to evaluate the quantitative accuracy and the 28-day test–retest repeatability (TRT) of various parametric quantitative methods for dynamic [(11)C]UCB-J studies in Alzheimer’s disease (AD) patients and healthy controls (HC). Eight HCs and seven AD patients underwent two 60-min dynamic [(11)C]UCB-J PET scans with arterial sampling over a 28-day interval. Several plasma-input based and reference-region based parametric methods were used to generate parametric images using metabolite corrected plasma activity as input function or white matter semi-ovale as reference region. Different parametric outcomes were compared regionally with corresponding non-linear regression (NLR) estimates. Furthermore, the 28-day TRT was assessed for all parametric methods. Spectral analysis (SA) and Logan graphical analysis showed high correlations with NLR estimates. Receptor parametric mapping (RPM) and simplified reference tissue model 2 (SRTM2) BP(ND), and reference Logan (RLogan) distribution volume ratio (DVR) regional estimates correlated well with plasma-input derived DVR and SRTM BP(ND). Among the multilinear reference tissue model (MRTM) methods, MRTM1 had the best correspondence with DVR and SRTM BP(ND). Among the parametric methods evaluated, spectral analysis (SA) and SRTM2 were the best plasma-input and reference tissue methods, respectively, to obtain quantitatively accurate and repeatable parametric images for dynamic [(11)C]UCB-J PET. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13550-021-00874-8
    corecore