58 research outputs found

    Corrosion protection mechanisms of carbon steel by an epoxy resin containing indole-3 butyric acid modified clay

    Get PDF
    This work is an extension of studies into the mechanisms of corrosion protection of mild steel by an epoxy resin containing organically modified clay (Hang et al. [1]; Truc et al. [2]). In a previous study (Truc et al. [2]), it was shown that indole-3 butyric acid (IBA)-modified clay improved the corrosion performance of epoxy. In the present study, it was shown that the IBA is an anodic inhibitor and its efficiency was about 93%. Exfoliation and dispersion of the IBA-modified clay in the epoxy coating were checked by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The improvement of the corrosion performance of the epoxy coating containing IBA-modified clay by comparison with pure epoxy coating was confirmed for a low film thickness (10 μm). Local electrochemical impedance measurements performed on scratched samples revealed the inhibitive action of IBA at the carbon steel/coating interface. It was shown that the inhibitor release from the IBA-modified clay was favoured for high pH values. Thus, in neutral media, the corrosion process which induces a local increase of pH will increase the self-healing performance

    Enhancing in vitro biocompatibility and corrosion protection of organic-inorganic hybrid sol-gel films with nanocrystalline hydroxyapatite

    Get PDF
    Application of novel organic-inorganic hybrid sol-gel coatings containing dispersed hydroxyapatite (HAp) particles improves the biocompatibility, normal human osteoblast (NHOst) response in terms of osteoblast viability and adhesion of a Ti6Al4V alloy routinely used in medical implants. The incorporation of HAp particles additionally results in more effective barrier proprieties and improved corrosion protection of the Ti6Al4V alloy through higher degree of cross-linking in the organopolysiloxane matrix and enhanced film thickness

    Diffusion and protection mechanisms of migratory corrosion inhibitors in reinforced concrete

    No full text
    Abstract not availabl

    Influence of curing temperature, silica nanoparticles- and cerium on surface morphology and corrosion behaviour of hybrid silane coatings on mild steel

    No full text
    This work is aimed at developing and investigating silane based organic-inorganic hybrid coatings possessing unique properties, which can be used to improve the performance of steel structures subjected to marine corrosion. These silane based sol-gel coatings were prepared by dip coating planar samples of mild steel in solution of an organically modified silica sol made from hydrolysis and polycondensation of tetraethylorthosilicate (TEOS) and methyltriethoxysilane (MTES) in acid catalysis condition. Crack-free coatings were obtained on curing at 200 degrees C. On increasing the curing temperature to 400 degrees C, however, cracks developed in the plain organic-inorganic hybrid coatings. This observation was consistent with the visual observations where appearance of the coated specimen changed from colourless metallic to brownish grey on curing from 200 degrees C to 400 degrees C temperature. The coatings were further modified using SiO(2) nanoparticles and cerium. The effect of change in the - temperature as well as - composition on the microstructural properties of the coatings was determined using optical microscopy, scanning electron microscopy and atom force microscopy. Additionally, Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR/FTIR) was carried out to show the formation of the Si-O-Si structural backbone of the hybrid material with the organic CH(3) group incorporated into the silica network. The corrosion protection performance of these coatings was examined using potentiodynamic polarisation technique and electrochemical impedance spectroscopy in aerated 3.5 wt.% NaCl solution. The polarization curves and corrosion resistance as measured by the bode plots suggested that the plain hybrid coatings offer good protection against corrosion. However, the SiO(2) and cerium modified nano hybrid coatings exhibited superior performance to that displayed by plain hybrid coatings. (C) 200
    corecore