120 research outputs found

    Searching for ß-delayed protons from 11 Be

    Get PDF
    ISOLDE Workshop and Usersmeeting. Wednesday 05 December - Friday 07 December 2018 .CERN ( ISOLDE User Support. PH Departmen - CERN/CH-1211 Geneve 23). --.https://indico.cern.ch/event/736872/contributions

    Core-coupled states and split proton-neutron quasi-particle multiplets in 122-126Ag

    Get PDF
    Neutron-rich silver isotopes were populated in the fragmentation of a 136Xe beam and the relativistic fission of 238U. The fragments were mass analyzed with the GSI Fragment separator and subsequently implanted into a passive stopper. Isomeric transitions were detected by 105 HPGe detectors. Eight isomeric states were observed in 122-126Ag nuclei. The level schemes of 122,123,125Ag were revised and extended with isomeric transitions being observed for the first time. The excited states in the odd-mass silver isotopes are interpreted as core-coupled states. The isomeric states in the even-mass silver isotopes are discussed in the framework of the proton-neutron split multiplets. The results of shell-model calculations, performed for the most neutron-rich silver nuclei are compared to the experimental data

    Experimental program of the Super-FRS Collaboration at FAIR and developments of related instrumentation

    Get PDF
    The physics program at the super-conducting fragment separator (Super-FRS) at FAIR, being operated in a multiple-stage, high-resolution spectrometer mode, is discussed. The Super-FRS will produce, separate and transport radioactive beams at high energies up to 1.5 AGeV, and it can be also used as a stand-alone experimental device together with ancillary detectors. Various combinations of the magnetic sections of the Super-FRS can be operated in dispersive, achromatic or dispersion-matched spectrometer ion-optical modes, which allow measurements of momentum distributions of secondary-reaction products with high resolution and precision. A number of unique experiments in atomic, nuclear and hadron physics are suggested with the Super-FRS as a stand-alone device, in particular searches for new isotopes, studies of hyper-nuclei, delta-resonances in exotic nuclei and spectroscopy of atoms characterized by bound mesons. Rare decay modes like multiple-proton or neutron emission and the nuclear tensor force observed in high momentum regime can be also addressed. The in-flight radioactivity measurements as well as fusion, transfer and deep-inelastic reaction mechanisms with the slowed-down and energy-bunched fragment beams are proposed for the high-resolution and energy buncher modes at the Super-FRS. (C) 2016 Elsevier B.V. All rights reserved.Peer reviewe

    The Complete Genome Sequence of Mycoplasma bovis Strain Hubei-1

    Get PDF
    Infection by Mycoplasma bovis (M. bovis) can induce diseases, such as pneumonia and otitis media in young calves and mastitis and arthritis in older animals. Here, we report the finished and annotated genome sequence of M. bovis strain Hubei-1, a strain isolated in 2008 that caused calf pneumonia on a Chinese farm. The genome of M. bovis strain Hubei-1 contains a single circular chromosome of 953,114 bp with a 29.37% GC content. We identified 803 open reading frames (ORFs) that occupy 89.5% of the genome. While 34 ORFs were Hubei-1 specific, 662 ORFs had orthologs in the M. bovis type strain PG45 genome. Genome analysis validated lateral gene transfer between M. bovis and the Mycoplasma mycoides subspecies mycoides, while phylogenetic analysis found that the closest M. bovis neighbor is Mycoplasma agalactiae. Glycerol may be the main carbon and energy source of M. bovis, and most of the biosynthesis pathways were incomplete. We report that 47 lipoproteins, 12 extracellular proteins and 18 transmembrane proteins are phase-variable and may help M. bovis escape the immune response. Besides lipoproteins and phase-variable proteins, genomic analysis found two possible pathogenicity islands, which consist of four genes and 11 genes each, and several other virulence factors including hemolysin, lipoate protein ligase, dihydrolipoamide dehydrogenase, extracellular cysteine protease and 5′-nucleotidase

    Mass measurements of As, Se and Br nuclei and their implication on the proton-neutron interaction strength towards the N=Z line

    Get PDF
    Mass measurements of the nuclides 69As, 70,71Se, and 71Br, produced via fragmentation of a 124Xe primary beam at the Fragment Separator (FRS) at GSI, have been performed with the multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS) of the FRS Ion Catcher with an unprecedented mass resolving power of almost 1000000. Such high resolving power is the only way to achieve accurate results and resolve overlapping peaks of short-lived exotic nuclei, whose total number of accumulated events is always limited. For the nuclide 69As, this is the first direct mass measurement. A mass uncertainty of 22 keV was achieved with only ten events. For the nuclide 70Se, a mass uncertainty of 2.6 keV was obtained, corresponding to a relative accuracy of δm/m=4.0×10−8, with less than 500 events. The masses of the nuclides 71Se and 71Br have been measured with an uncertainty of 23 and 16 keV, respectively. Our results for the nuclides 70,71Se and 71Br are in good agreement with the 2016 Atomic Mass Evaluation, and our result for the nuclide 69As resolves the discrepancy between the previous indirect measurements. We measured also the mass of the molecule 14N15N40Ar (A=69) with a relative accuracy of δm/m=1.7×10−8, the highest yet achieved with an MR-TOF-MS. Our results show that the measured restrengthening of the proton-neutron interaction (δVpn) for odd-odd nuclei along the N=Z line above Z=29 (recently extended to Z=37) is hardly evident at the N−Z=2 line, and not evident at the N−Z=4 line. Nevertheless, detailed structure of δVpn along the N−Z=2 and N−Z=4 lines, confirmed by our mass measurements, may provide a hint regarding the ongoing ≈500 keV discrepancy in the mass value of the nuclide 70Br, which prevents including it in the world average of Ft value for superallowed 0+→0+β decays. The reported work sets the stage for mass measurements with the FRS Ion Catcher of nuclei at and beyond the N=Z line in the same region of the nuclear chart, including the nuclide 70Br.peerReviewe

    β decay of 6He into the α+d continuum

    Get PDF
    The rare β-decay channel of 6He into the α+d continuum was investigated at the REX-ISOLDE facility. Bunches of postaccelerated 6He ions were implanted into the optical time projection chamber (OTPC), where the decays with emission of charged particles were recorded. This novel technique allowed us to extend the low-energy end of the spectrum down to 150 keV in α+d center of mass, corresponding to a deuteron energy of 100 keV. The branching ratio for this process amounts to [2.78±0.07(stat)±0.17(sys)]×10^{−6}. The shape of the spectrum is found to be in a good agreement with a three-body model, while the total intensity is about 20% larger than the predicted one.We would like to thank the ISOLDE facility for providing the excellent beam. We are grateful to P. Descouvemont for providing us with the results of Ref. [15] in a tabular form. The work was partially supported by the Polish National Science Center under Contract No. UMO-2011/01/B/ST2/01943, by the European Nuclear Science and Applications Research (ENSAR) under Project No. 262010, by the Research Foundation - Flanders (FWO), by GOA/2010/010 (BOF KU Leuven), and by the Interuniversity Attraction Poles Programme initiated by the Belgian Science Policy Office (BriX network P7/12)

    Search for flavor-changing nonstandard neutrino interactions using nu(e) appearance in MINOS

    Get PDF
    We report new constraints on flavor-changing nonstandard neutrino interactions from the MINOS long-baseline experiment using νe and ¯νe appearance candidate events from predominantly νμ and ¯νμ beams. We used a statistical selection algorithm to separate νe candidates from background events, enabling an analysis of the combined MINOS neutrino and antineutrino data. We observe no deviations from standard neutrino mixing, and thus place constraints on the nonstandard interaction matter effect, |ϵeτ|, and phase, (δCP+δeτ), using a 30-bin likelihood fit
    corecore