232 research outputs found

    Automated glycan assembly of xyloglucan oligosaccharides

    Get PDF

    Multivalent interaction and selectivities in selectin binding of functionalized gold colloids decorated with carbohydrate mimetics

    Get PDF
    Colloidal gold particles with functionalized organic shells were applied as novel selectin binders. The ligand shell was terminated with different monocyclic carbohydrate mimetics as simplified analogs of the sLe(x) unit found in biological selectin ligands. The multivalent presentation of the sulfated selectin binding epitopes on the gold particles led to extremely high binding affinities towards L- and P-selectin and IC(50) values in the subnanomolar range. Depending on the ring size of the sulfated carbohydrate mimetic, its substitution pattern and its configuration, different selectivities for either L-selectin or P-selectin were obtained. These selectivities were not found for gold particles with simple acyclic sulfated alcohols, diols and triols in the ligand shell. In addition, the influence of the particle size and the thickness of the hydrophobic organic shell were systematically investigated

    Active Site Mapping of Xylan-Deconstructing Enzymes with Arabinoxylan Oligosaccharides Produced by Automated Glycan Assembly

    Get PDF
    Xylan-degrading enzymes are crucial for the deconstruction of hemicellulosic biomass, making the hydrolysis products available for various industrial applications such as the production of biofuel. To determine the substrate specificities of these enzymes, we prepared a collection of complex xylan oligosaccharides by automated glycan assembly. Seven differentially protected building blocks provided the basis for the modular assembly of 2-substituted, 3-substituted, and 2-/3-substituted arabino- and glucuronoxylan oligosaccharides. Elongation of the xylan backbone relied on iterative additions of C4-fluorenylmethoxylcarbonyl (Fmoc) protected xylose building blocks to a linker-functionalized resin. Arabinofuranose and glucuronic acid residues have been selectively attached to the backbone using fully orthogonal 2-(methyl)naphthyl (Nap) and 2-(azidomethyl)benzoyl (Azmb) protecting groups at the C2 and C3 hydroxyls of the xylose building blocks. The arabinoxylan oligosaccharides are excellent tools to map the active site of glycosyl hydrolases involved in xylan deconstruction. The substrate specificities of several xylanases and arabinofuranosidases were determined by analyzing the digestion products after incubation of the oligosaccharides with glycosyl hydrolases.Fil: Senf, Deborah. Max Planck Institut für Kolloid und Grenzflächenforschung; Alemania. Freie Universität; AlemaniaFil: Ruprecht, Colin. Max Planck Institut für Kolloid und Grenzflächenforschung; AlemaniaFil: de Kruijff, Goswinus H. M.. Max Planck Institut für Kolloid und Grenzflächenforschung; Alemania. Freie Universität; Alemania. University Mainz. Institute of Institute of Organic Chemistry, Johannes Gutenberg; AlemaniaFil: Simonetti, Sebastián Osvaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina. Max Planck Institut für Kolloid und Grenzflächenforschung; AlemaniaFil: Schuhmacher, Frank. Max Planck Institut für Kolloid und Grenzflächenforschung; Alemania. Freie Universität; AlemaniaFil: Seeberger, Peter H.. Max Planck Institut für Kolloid und Grenzflächenforschung; Alemania. Freie Universität; AlemaniaFil: Pfrengle, Fabian. Max Planck Institut für Kolloid und Grenzflächenforschung; Alemania. Freie Universität; Alemani

    Automated glycan assembly of xyloglucan oligosaccharides

    Get PDF
    We report the automated glycan assembly of oligosaccharide fragments related to the hemicellulose xyloglucan (XG). Iterative addition of monosaccharide and disaccharide building blocks to a solid support provided seven cellulose and xyloglucan fragments including XXGG- and XXXG-type oligosaccharides

    Automated glycan assembly of oligosaccharides related to arabinogalactan proteins

    No full text
    Arabinogalactan proteins are heavily glycosylated proteoglycans in plants. Their glycan portion consists of type-II arabinogalactan polysaccharides whose heterogeneity hampers the assignment of the arabinogalactan protein function. Synthetic chemistry is key to the procurement of molecular probes for plant biologists. Described is the automated glycan assembly of 14 oligosaccharides from four monosaccharide building blocks. These linear and branched glycans represent key structural features of natural type-II arabinogalactans and will serve as tools for arabinogalactan biology

    Automated glycan assembly of galactosylated xyloglucan oligosaccharides and their recognition by plant cell wall glycan-directed antibodies

    Get PDF
    We report the automated glycan assembly of oligosaccharides related to the plant cell wall hemicellulosic polysaccharide xyloglucan. The synthesis of galactosylated xyloglucan oligosaccharides was enabled by introducing p-methoxybenzyl (PMB) as a temporary protecting group for automated glycan assembly. The generated oligosaccharides were printed as microarrays, and the binding of a collection of xyloglucan-directed monoclonal antibodies (mAbs) to the oligosaccharides was assessed. We also demonstrated that the printed glycans can be further enzymatically modified while appended to the microarray surface by Arabidopsis thaliana xyloglucan xylosyltransferase 2 (AtXXT2)

    A traceless photocleavable linker for the automated glycan assembly of carbohydrates with free reducing ends

    Get PDF
    We report a traceless photocleavable linker for the automated glycan assembly of carbohydrates with free reducing ends. The reductive-labile functionality in the linker tolerates all commonly used reagents and protocols for automated glycan assembly, as demonstrated with the successful preparation of nine plant cell wall-related oligosaccharides, and is cleaved by hydrogenolysis

    Grey wolf genomic history reveals a dual ancestry of dogs

    Full text link
    The grey wolf (Canis lupus) was the first species to give rise to a domestic population, and they remained widespread throughout the last Ice Age when many other large mammal species went extinct. Little is known, however, about the history and possible extinction of past wolf populations or when and where the wolf progenitors of the present-day dog lineage (Canis familiaris) lived1-8. Here we analysed 72 ancient wolf genomes spanning the last 100,000 years from Europe, Siberia and North America. We found that wolf populations were highly connected throughout the Late Pleistocene, with levels of differentiation an order of magnitude lower than they are today. This population connectivity allowed us to detect natural selection across the time series, including rapid fixation of mutations in the gene IFT88 40,000-30,000 years ago. We show that dogs are overall more closely related to ancient wolves from eastern Eurasia than to those from western Eurasia, suggesting a domestication process in the east. However, we also found that dogs in the Near East and Africa derive up to half of their ancestry from a distinct population related to modern southwest Eurasian wolves, reflecting either an independent domestication process or admixture from local wolves. None of the analysed ancient wolf genomes is a direct match for either of these dog ancestries, meaning that the exact progenitor populations remain to be located

    Arabinoxylan-Oligosaccharides act as damage associated molecular patterns in plants regulating disease resistance

    No full text
    Immune responses in plants can be triggered by damage/microbe-associated molecular patterns (DAMPs/MAMPs) upon recognition by plant pattern recognition receptors (PRRs). DAMPs are signaling molecules synthesized by plants or released from host cellular structures (e.g., plant cell walls) upon pathogen infection or wounding. Despite the hypothesized important role of plant cell wall-derived DAMPs in plant-pathogen interactions, a very limited number of these DAMPs are well characterized. Recent work demonstrated that pectin-enriched cell wall fractions extracted from the cell wall mutant impaired in Arabidopsis Response Regulator 6 (arr6), that showed altered disease resistance to several pathogens, triggered more intense immune responses than those activated by similar cell wall fractions from wild-type plants. It was hypothesized that arr6 cell wall fractions could be differentially enriched in DAMPs. In this work, we describe the characterization of the previous immune-active fractions of arr6 showing the highest triggering capacities upon further fractionation by chromatographic means. These analyses pointed to a role of pentose-based oligosaccharides triggering plant immune responses. The characterization of several pentose-based oligosaccharide structures revealed that β-1,4-xylooligosaccharides of specific degrees of polymerization and carrying arabinose decorations are sensed as DAMPs by plants. Moreover, the pentasaccharide 33-α-L-arabinofuranosyl-xylotetraose (XA3XX) was found as a highly active DAMP structure triggering strong immune responses in Arabidopsis thaliana and enhancing crop disease resistance

    Cracking the “Sugar Code”: A Snapshot of N- and O-Glycosylation Pathways and Functions in Plants Cells

    Get PDF
    Glycosylation is a fundamental co-translational and/or post-translational modification process where an attachment of sugars onto either proteins or lipids can alter their biological function, subcellular location and modulate the development and physiology of an organism. Glycosylation is not a template driven process and as such produces a vastly larger array of glycan structures through combinatorial use of enzymes and of repeated common scaffolds and as a consequence it provides a huge expansion of both the proteome and lipidome. While the essential role of N- and O-glycan modifications on mammalian glycoproteins is already well documented, we are just starting to decode their biological functions in plants. Although significant advances have been made in plant glycobiology in the last decades, there are still key challenges impeding progress in the field and, as such, holistic modern high throughput approaches may help to address these conceptual gaps. In this snapshot, we present an update of the most common O- and N-glycan structures present on plant glycoproteins as well as (1) the plant glycosyltransferases (GTs) and glycosyl hydrolases (GHs) responsible for their biosynthesis; (2) a summary of microorganism-derived GHs characterized to cleave specific glycosidic linkages; (3) a summary of the available tools ranging from monoclonal antibodies (mAbs), lectins to chemical probes for the detection of specific sugar moieties within these complex macromolecules; (4) selected examples of N- and O-glycoproteins as well as in their related GTs to illustrate the complexity on their mode of action in plant cell growth and stress responses processes, and finally (5) we present the carbohydrate microarray approach that could revolutionize the way in which unknown plant GTs and GHs are identified and their specificities characterized.Fil: Strasser, Richard. University of Natural Resources and Life Sciences; SuizaFil: Seifert, Georg. University of Natural Resources and Life Sciences; SuizaFil: Doblin, Monika S.. La Trobe University; AustraliaFil: Johnson, Kim L.. La Trobe University; AustraliaFil: Ruprecht, Colin. University of Natural Resources and Life Sciences; SuizaFil: Pfrengle, Fabian. University of Natural Resources and Life Sciences; SuizaFil: Bacic, Antony. La Trobe University; AustraliaFil: Estevez, Jose Manuel. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Parque Centenario. Instituto de Investigaciones BioquĂ­micas de Buenos Aires. FundaciĂłn Instituto Leloir. Instituto de Investigaciones BioquĂ­micas de Buenos Aires; Argentin
    • …
    corecore