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Glycosylation is a fundamental co-translational and/or post-translational modification
process where an attachment of sugars onto either proteins or lipids can alter
their biological function, subcellular location and modulate the development and
physiology of an organism. Glycosylation is not a template driven process and
as such produces a vastly larger array of glycan structures through combinatorial
use of enzymes and of repeated common scaffolds and as a consequence it
provides a huge expansion of both the proteome and lipidome. While the essential
role of N- and O-glycan modifications on mammalian glycoproteins is already well
documented, we are just starting to decode their biological functions in plants.
Although significant advances have been made in plant glycobiology in the last
decades, there are still key challenges impeding progress in the field and, as
such, holistic modern high throughput approaches may help to address these
conceptual gaps. In this snapshot, we present an update of the most common
O- and N-glycan structures present on plant glycoproteins as well as (1) the
plant glycosyltransferases (GTs) and glycosyl hydrolases (GHs) responsible for their
biosynthesis; (2) a summary of microorganism-derived GHs characterized to cleave
specific glycosidic linkages; (3) a summary of the available tools ranging from
monoclonal antibodies (mAbs), lectins to chemical probes for the detection of specific
sugar moieties within these complex macromolecules; (4) selected examples of N-
and O-glycoproteins as well as in their related GTs to illustrate the complexity
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on their mode of action in plant cell growth and stress responses processes,
and finally (5) we present the carbohydrate microarray approach that could
revolutionize the way in which unknown plant GTs and GHs are identified and their
specificities characterized.

Keywords: Arabidopsis, glycosyltransferases, plant protein glycosylation, glycan arrays, O-glycosylation,
N-glycosylation, glycosyl hydrolases, glycan functions

INTRODUCTION

In the model plant Arabidopsis thaliana, approx. 10–15% of the
genome is devoted to construction, dynamic architecture, sensing
functions, and metabolism of the plant cell wall (Cosgrove, 2005).
The major components of plant cell walls include a complex
composite of polysaccharide networks, lignin (secondary walls)
together with minor amounts (generally less than 10%) of N-
and/or O-glycosylated proteins (Somerville et al., 2004; Cosgrove,
2005; Albenne et al., 2009; Ellis et al., 2010; Lamport et al., 2011;
Zielinska et al., 2012). Protein glycosylation, through co- and/or
post-translational modification, results in addition of glycans
(mono-/oligo-/polysaccharides and GPI anchors) that influence
a protein’s stability, location and functional properties (Lerouge
et al., 1998; Nagashima et al., 2018). While N-glycan synthesis
in the endoplasmic reticulum (ER) is relatively well conserved in
eukaryotes, N-glycan processing and O-glycan biosynthesis in the
Golgi apparatus (GA) are kingdom-specific and result in different
oligosaccharide structures attached to glycoproteins in plants and
mammals (Gomord et al., 2010). The prasinophytes situated at
the base of the green plant lineage feature a much simpler set of
N-glycan elaborations (Ulvskov et al., 2013) which may represent
either the primordial eukaryotic N-glycosylation machinery or
be the result of gene loss. Following initial processing steps
in the ER, the N-glycans show differences in the maturation
steps in the GA. Interestingly, plant N-glycans differ from their
animal counterparts by the following: (1) the complete absence
of sialic acid, (2) the core Fuc residues (where present) are
α(1→ 3) rather than α(1→ 6)-linked to the reducing GlcNAc,
and (3) the core β-mannosyl residue is often substituted with
Xylβ(1 → 2) (Sturm, 1995). In contrast to N-glycosylation,
the primary mechanism for O-glycosylation in plants is unique
among eukaryotes and is via attachment to the hydroxyl group of
the imino acid hydroxyproline (Hyp/O; in mammalian systems
this type of glycosylation is to hydroxylysine) and less commonly
to the hydroxyl group of serine [Ser; e.g., in extensins (EXTs)
(Kieliszewski, 2001)]. This O-linked glycosylation determines
the molecular properties and biological functions of members
of the Hyp-rich glycoprotein (HRGP) superfamily and some
secreted small peptides (e.g., CLE for CLAVATA3/Endosperm
surrounding region). In addition, in plants there is a complete
absence of GalNAc-Ser/Thr in secreted glycoproteins that is
common in mammalian secreted glycoproteins and whilst
there are also some other forms of O-glycosylation they are
less common (e.g., Ser-O-GlcNAc on cytoplasmic and nuclear
proteins). This overview should be read in conjunction with
more focused reviews recently published by Seifert (2020)
and Silva et al. (2020) to gain a comprehensive coverage of

the structure, function and biosynthesis of arabinogalactan-
proteins (AGPs).

N-GLYCAN PROCESSING PATHWAY IN
PLANTS: GLYCOSYLTRANSFERASES
(GTs) AND GLYCOSYL HYDROLASES
(GHs)

Asparagine (N)-linked glycosylation is a major co- and post-
translational modification of proteins entering the secretory
pathway. The initial step of N-glycosylation is the en bloc transfer
of a preassembled oligosaccharide (Glc3Man9GlcNAc2) from a
lipid carrier, dolicholpyrophosphate (PP-Dol) to selected Asn
residues primarily in the canonical sequence Asn-X-Ser/Thr
(X6=Pro) within nascent polypeptides, although some non-
consensus sequences have been reported (Figure 1; Strasser,
2016). The lipid-linked oligosaccharide precursor is assembled
in a stepwise manner by Asn-linked glycosylation (ALG)
enzymes. The final step at the cytosolic side of the ER
is catalyzed by ALG11 that transfers two consecutive α-
(1 → 2) Man residues to the lipid-linked oligosaccharide.
The resulting Man5GlcNAc2-PP-Dol is then transported across
the ER membrane by a flippase-like protein and used as
substrate in the ER lumen by the three mannosyltransferases
ALG3, ALG9, ALG12 and the three glucosyltransferases (ALG6,
ALG8, and ALG10) from Dol-P donors. The multi-subunit
oligosaccharyltransferase (OST) complex catalyzes the transfer
of the assembled oligosaccharide to the nascent polypeptide
in the lumen of the ER with all subsequent steps restricted
to the lumen of either the ER or GA. In the ER, the
three Glc residues are sequentially trimmed by α-glucosidase I
(GCSI) and II (GCSII) and a single α-(1 → 2)-Man residue
is removed from the middle branch of the oligomannosidic
N-glycan by the ER-α-mannosidase I (MNS3) to form the
Man8GlcNAc2 structure (Liebminger et al., 2009). In the GA,
the Golgi α-mannosidase I (MNS1/MNS2) cleaves off three
additional Man residues and generates the acceptor substrate
for N-acetylglucosaminyltransferase I (GnTI) that initiates
complex-type N-glycan biosynthesis (von Schaewen et al.,
1993; Strasser et al., 1999a,b). The product of GnTI can be
either further trimmed by Golgi α-mannosidase II (GMII) or
serve as a substrate for β-(1 → 2)-xylosyltransferase (XylT).
N-acetylglucosaminyltransferase II (GnTII) transfers the second
GlcNAc residue to complex-type N-glycans and core α-(1→ 3)-
fucosyltransferase (FUT11/FUT12) attaches a α-(1→ 3)-linked
Fuc to the innermost GlcNAc residue. The core fucosylation
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FIGURE 1 | N-glycosylation and N-glycan maturation steps in plants. Several Asn-linked glycosylation (ALG) enzymes catalyze the assembly of the dolichol
pyrophosphate (PP)-linked oligosaccharide in the cytosol and ER. The multi-subunit oligosaccharyltransferase (OST) complex transfers the oligosaccharide to
accessible Asn-residues of nascent proteins. N-glycan processing enzymes: α-glucosidase I (GCSI), α-glucosidase II (GCSII), ER α-mannosidase I (MNS3), Golgi
α-mannosidase I (MNS1/MNS2), β-(1→ 2)-N-acetylglucosaminyltransferase I (GnTI), β-(1→ 2)-N-acetylglucosaminyltransferase II (GnTII),
β-(1→ 2)-xylosyltransferase, core α-(1→ 3)-fucosyltransferase (FUT11/FUT12), β-(1→ 3)-galactosyltransferase 1 (GALT1), and α-(1→ 4)-fucosyltransferase
(FUT13). Terminal GlcNAc residues can be removed by β-hexosaminidases (HEXO1/3). GHs and GTs are listed in Tables 1, 2 while probes against N-glycans are
listed in Table 3.

linkage is different from mammalian complex N-glycans which
have a α-(1 → 6)-Fuc linked to the innermost GlcNAc residue
(Strasser et al., 2004). The resulting structure (also termed
GnGnXF) with two terminal GlcNAc residues, a β-(1 → 2)-
linked Xyl and a core α-(1 → 3)-linked Fuc is the most
prevalent complex-type N-glycan in plants (Wilson et al., 2001;

Zeng et al., 2018). Truncated (paucimannosidic) N-glycans are
generated in post-Golgi compartments either by the vacuolar β-
N-acetylhexosaminidase 1 (HEXO1) or by HEXO3 which resides
mainly in the plasma membrane/apoplast (Liebminger et al.,
2011). The most elaborate complex-type N-glycans are generated
in the trans Golgi by β-(1→ 3)-galactosyltransferase 1 (GALT1)
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TABLE 1 | Selected examples for carbohydrate GTs acting on N-glycans and O-glycans including type-II AGs on AGPs and EXTs from Arabidopsis thaliana or otherwise
as indicated.

Activity CAZy family Protein name References

GTs in N-glycan processing

β-(1→ 2)-N-acetylglucosaminyltransferase
I

13 GnTI/CGL1/GlcNAc-T1 von Schaewen et al., 1993; Strasser et al., 1999a

β-(1→ 2)-N-acetylglucosaminyltransferase
II

16 GnTII Strasser et al., 1999b

β-(1→ 2)-xylosyltransferase 61 XYLT Strasser et al., 2000

α-(1→ 3)-fucosyltransferase 10 FUT11/FUT12 Leiter et al., 1999

β-(1→ 3)-galactosyltransferase 1 31 GALT1 Strasser et al., 2007b

α-(1→ 4)-fucosyltransferase 10 FUT13/FucTC Wilson et al., 2001; Bakker et al., 2001

P4Hs in AGPs/EXTs processing

Prolyl-4-hydroxylase – CrP4H1 Koski et al., 2007, 2009; Velasquez et al., 2011

P4H2,P4H5,P4H13 Velasquez et al., 2015a

GTs in AGPs processing

Hyp-O-galactosyltransferase 31 GALT2-GALT6; HPGT1-HPGT3
(GALT15-GALT17)

Basu et al., 2013, 2015a,b; Ogawa-Ohnishi and
Matsubayashi, 2015

β-(1→ 3)-galactosyltransferase 31 GALT14 (KNS4/UPEX1) Suzuki et al., 2017; Li et al., 2012

GALT9 (At1g77810) Qu et al., 2008

GALT31A Geshi et al., 2013; Ruprecht et al., 2020

β-(1→ 6)-galactosyltransferase 29 GALT29A Dilokpimol et al., 2014

31 GALT31A Knoch et al., 2014

β-glucuronosyltransferase 14 GlcAT14A-GlcAT14E Knoch et al., 2013; Dilokpimol et al., 2014;
Lopez-Hernandez et al., 2020; Zhang et al., 2020

α-fucosyltransferase 37 FUT4 Wu et al., 2010; Liang et al., 2013; Tryfona et al., 2014

FUT6

FUT7 Ruprecht et al., 2020

β-arabinosyltransferase 77 RAY1 Gille et al., 2013

GTs in EXTs processing

Hyp-O-arabinosyltransferase 95 HPAT1-HPAT3 Ogawa-Ohnishi et al., 2013; Velasquez et al., 2015a

β-(1→ 2)-arabinosyltransferase 77 RRA1-RRA3 Egelund et al., 2007; Velasquez et al., 2011

β-(1→ 2)-arabinosyltransferase 77 XEG113 Gille et al., 2009; Velasquez et al., 2011

α-(1→ 3)-arabinosyltransferase 47 EXAD Møller et al., 2017

Serine-O-galactosyltransferase 96 SGT1/SerGT1 Saito et al., 2014; Velasquez et al., 2015a

In addition, prolyl-4-hydroxylases (P4Hs) are included. Please also see Showalter and Basu (2016) and Silva et al. (2020) for GTs acting in AGP/EXT O-glycan processing.

and α-(1 → 4)-fucosyltransferase (FUT13) (Strasser et al.,
2007b). The resulting Lewis A structure [α-L-Fucp-(1→ 4)-
β-D-Galp-(1→ 3)- β-D-GlcpNAc-R] is ubiquitously found in
plants (Fitchette-Lainé et al., 1997; Wilson et al., 2001;
Zeng et al., 2018), but present only on a small number of
secretory glycoproteins.

Impaired N-glycosylation due to either a defective OST
complex or a blocked Glc removal from the transferred
oligosaccharide results in lethality in Arabidopsis (Boisson
et al., 2001; Gillmor et al., 2002; Koiwa et al., 2003;
Lerouxel et al., 2005). Distinct oligomannosidic N-glycans
in the ER are critical for ER quality control and ER-
associated degradation (ERAD) (Jin et al., 2007; Hong et al.,
2012; Hüttner et al., 2014). For example, the biogenesis of
the Arabidopsis EF-Tu receptor (EFR) is dependent on Glc
trimming and reglucosylation of oligomannosidic N-glycans
and association with the lectin chaperones calnexin/calreticulin
(Li et al., 2009; Lu et al., 2009). Mutant misfolded variants
of BRASSINOSTEROID INSENSITIVE1 (BRI1) that expose a

terminal α-(1→ 6)-linked Man on the oligomannosidic N-glycan
are recognized by the lectin OS9 and sent to ERAD (Hong
et al., 2008, 2012; Hüttner et al., 2012). Knockout of the
three α-mannosidases (MNS1–MNS3) involved in trimming of
oligomannosidic N-glycans to Man5GlcNAc2 causes a severe root
development phenotype (Liebminger et al., 2009). GnTI-deficient
mutants (cgl1) which completely lack complex N-glycans and
display primarily Man5GlcNAc2, on the other hand, do not show
any growth or morphological phenotype in Arabidopsis (von
Schaewen et al., 1993). However, a salt sensitivity phenotype
has been described for cgl1 and other Arabidopsis N-glycan
processing mutants that completely lack complex N-glycans or
specific modifications in the GA and there are links to a role
in cell wall formation (Kang et al., 2008). The β - (1→4)-
endoglucanase KORRIGAN1, one of the potential glycoprotein
candidates playing a role in these processes, does not require
complex N-glycans for its activity (Liebminger et al., 2013),
but there are other unknown factors that require GnTI and
affect KORRIGAN1 function (Rips et al., 2014). Notably,
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TABLE 2 | Selected examples for carbohydrate GHs and lyases acting on N-glycans, O-glycans including type-II AGs on AGPs and EXTs.

Activity CAZy family Protein name Species References

GHs in N-glycan processing and degradation

α-(1→ 2)-glucosidase I 63 GCSI/KNF-14 A. thaliana Boisson et al., 2001; Gillmor
et al., 2002

α-(1→ 3)-glucosidase II 31 GCSII/RSW3 A. thaliana Burn et al., 2002

ER α-(1→ 2)-mannosidase 47 MNS3 A. thaliana Liebminger et al., 2009

Golgi α-(1→ 2)-mannosidase I 47 MNS1/MNS2/GMI A. thaliana Liebminger et al., 2009

Glycine max Nebenführ et al., 1999

Golgi α-(1→ 3/6)-mannosidase II 38 GMII/HGL1 A. thaliana Strasser et al., 2006

α-(1→ 3/4)-fucosidase 29 FUC1 Prunus dulcis (almond), A.
thaliana

Zeleny et al., 2006; Kato et al.,
2018

β-(1→ 3/4)-galactosidase 35 BGAL1 Nicotiana benthamiana Kriechbaum et al., 2020

β-hexosaminidases 20 HEXOs A. thaliana Strasser et al., 2007a;
Liebminger et al., 2011

Lytic enzymes acting on type-II AGs glycans of
AGPs

FvEn3GAL 16 FvEn3GAL Flammulina velutipes Kotake et al., 2011

exo-β-(1→ 3)-galactanase 43 Il1,3Gal Irpex lacteus Tsumuraya et al., 1990; Kotake
et al., 2009

43 A. thaliana Nibbering et al., 2020

endo-β-(1→ 6)-galactanase 30 Tv6GAL Trichoderma viride Kotake et al., 2004

30 Nc6GAL Neurospora crassa Takata et al., 2010

β-(1→ 3),(1→ 6)-galactanase 35 RsBGAL1 Raphanus sativus Kotake et al., 2005

β-(1→ 3),(1→ 6)-galactanase 35 SlTBG1 Solanum lycopersicum Eda et al., 2014

α-L-arabinofuranosidase 54 NcAraf1 Neurospora crassa Takata et al., 2010

3 RsAraf1 A. thaliana, Raphanus sativus
(radish), and Bacteroides

thetaiotaomicron

Kotake et al., 2006

Bacteroides thetaiotaomicron 127 Cartmell et al., 2018

β-L-arabinopyranosidase 27 SaArap27A Streptomyces avermitilis Ichinose et al., 2009

27 AtAPSE A. thaliana Imaizumi et al., 2017

β-glucuronidase 79 NcGlcAase Neurospora crassa Konishi et al., 2008

79 AnGlcAase Aspergillus niger

79 AtGUS2 A. thaliana Eudes et al., 2008

4-5-anhydro-glucuronidase 154 Bacteroides thetaiotaomicron,
Bacteroides thetaiotaomicron

Cartmell et al., 2018

105 Cartmell et al., 2018

α-L-rhamnosidase 28 SaRha78A Aspergillus niger Martens-Uzunova et al., 2006

78 Streptomyces avermitilis Ichinose et al., 2013

106 Sphingomonas paucimobilis Miyata et al., 2005)

α-L-rhamno-glucurono lyase PL27 Bacteroides cellulosilyticus Cartmell et al., 2018

exo-α-L-(1→ 2)-fucosidase 95 AfcA Bifidobacterium bifidum Katayama et al., 2004

95 Aspergillus nidulans Pogorelko et al., 2016

? Xanthomonas manihotis Wong-Madden and Landry,
1995

Lytic enzymes acting on glycans in EXTs

β-L-arabinofuranosidase Bifidobacterium bifidum Fujita et al., 2014

β-L-(1→ 2)-arabinofuranosidase 121 HypBA2 Bifidobacterium bifidum Fujita et al., 2011

β-L-(1→ 2)-arabinofuranosidase 121 XeHypBA2 Xanthomonas euvesicatoria Nakamura et al., 2018

(XCV2729)

α-L-(1→ 3)-arabinofuranosidase 43 XeHypAA (XCV2728) Xanthomonas euvesicatoria Nakamura et al., 2018

Arabinofuranosidase-(1→ 4)-Hyp 127 XeHypBA1 (XCV2724) Xanthomonas euvesicatoria Nakamura et al., 2018

Please also see Silva et al. (2020) for GHs acting on type-II AG O-glycans of AGPs.
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TABLE 3 | Toolkit Abs/probes available to characterize N- and O-glycans.

mAbs/reagent Species origin Tissue origin Minimal epitope recognized References

JIM4 Daucus carota Suspension cultured
cells

β-GlcA-(1→ 3)-α-GalA-(1→ 2)-Rha Knox et al., 1989; Yates et al., 1996

JIM8 Beta vulgaris Suspension cultured
cells

unknown Pennell et al., 1991

JIM13 Daucus carota Suspension cultured
cells

β-GlcA-(1→ 3)-α-GalA-(1→ 2)-Rha Knox et al., 1991; Yates et al., 1996

JIM14 Daucus carota Suspension cultured
cells

β-Gal-(1→ 6)-β-Gal-(1→ 6)-β-Gal-
(1→ 6)

Knox et al., 1991; Yates et al.,
1996; Ruprecht et al., 2017

JIM15 Daucus carota Suspension cultured
cells

unknown Knox et al., 1991; Yates et al., 1996

JIM16 Daucus carota Suspension cultured
cells

β-Gal-(1→ 6) Knox et al., 1991; Yates et al.,
1996; Ruprecht et al., 2017β-Gal-(1→ 3)-β-Gal-(1→ 3)-β-Gal-

(1→ 3)

JIM84 Daucus carota Suspension cultured
cells

α-L-Fucp-(1→ 4)-β-D-Galp-(1→ 3)-β-
D-GlcpNAc-R

Horsley et al., 1993

JIM101 Gymnocolea inflata Extracted AGPs unknown Pattathil et al., 2010

JIM133 Zinnia elegans Tracheary element cell
walls

β-Gal-(1→ 3)-β-Gal-(1→ 3)-β-Gal-
(1→ 3)

Pattathil et al., 2010; Ruprecht
et al., 2017

LM2 Oryza sativa Suspension cultured
cells

β-GlcA-(1→ 6)-β-Gal-(1→ 6)-β-Gal-
(1→ 6)-β-Gal-(1→ 6)

Smallwood et al., 1996; Ruprecht
et al., 2017

LM14 Arabidopsis
thaliana

Mixed leaves, stems
and roots

Unknown Møller et al., 2008

MAC204 Pisum sativum Peribacteroid
membrane

Unknown Bradley et al., 1988

MAC207 Pisum sativum Peribacteroid
membrane

β-GlcA-(1→ 3)-α-GalA-(1→ 2)-Rha Pennell et al., 1989; Yates et al.,
1996

PN16.4B4 Nicotiana glutinosa Suspension cultured
cells

Unknown Norman et al., 1986; Pattathil et al.,
2010

β-Glc Yariv (synthetic dye) β-Gal-(1→ 3)-β-Gal-(1→ 3)-β-Gal-
(1→ 3)-β-Gal-(1→ 3)-β-Gal)n>5

Yariv et al., 1967; Kitazawa et al.,
2013; Paulsen et al., 2014

an Arabidopsis mutant lacking complex N-glycans due to a
deficiency in the UDP-GlcNAc transporter 1 (UGNT1) does
not show a salt sensitivity phenotype (Ebert et al., 2018). Apart
from Arabidopsis, complex N-glycan deficient rice and Lotus
japonicus mutants have been characterized which display severe
defects in growth and reproduction (Fanata et al., 2013; Strasser,
2014; Harmoko et al., 2016; Pedersen et al., 2017). Collectively,
while the oligomannosidic N-glycans play a role in ER-quality
control, the potential suite of biological functions of complex-
type and paucimannosidic N-glycans on glycoproteins is still
largely unknown and the underlying mechanisms remain to
be elucidated for the described phenotypes in Arabidopsis and
other plant species.

The biological function of the β-N-acetylhexosaminidase
(HEXOs), especially HEXO3 acting at the plasma
membrane/apoplast is unknown. In addition to HEXOs, it is
possible that other GHs (Table 1) liberate monosaccharides from
complex N-glycans either on a specific group of glycoproteins
or in specific cell-types. Golgi-localized enzymes such as
the recently characterized exo-β-(1 → 3)-galactosidases
(Nibbering et al., 2020) may to some extent hydrolyze the
Gal transferred by GALT1 directly in the Golgi (Table 2).
Similarly, either Nicotiana benthamiana BGAL1 or another GH

with β-(1 → 3/4)-galactosidase activity could modify Lewis
A structures in the apoplast (Kriechbaum et al., 2020). Plant
α-(1 → 3/4)-fucosidases that can cleave off Fuc residues from
Lewis A structures have been identified in several plant species
(Zeleny et al., 2006; Rahman et al., 2016; Kato et al., 2018). The
only Arabidopsis GH29 α-(1→ 3/4)-fucosidase, AtFUC1, acts in
the glycan degradation pathway in the vacuole and hydrolyses
primarily the core α-(1 → 3)-linked Fuc. Consistent with the
described substrate specificity, the AtFUC1-deficient mutant
displayed slightly higher levels of Lewis A containing complex
N-glycans. The degradation pathway for oligomannosidic and
complex N-glycans in the vacuole involves several GHs whose
substrate specificities are already well characterized (Léonard
et al., 2009; Ishimizu, 2015; Kato et al., 2018). Apart from
exo-glycosidases, plants have endo-glycosidases such as peptide-
N-glycanase A (PNGase A) that is active on small glycopeptides
and hydrolyzes complex N-glycans with core α-(1→ 3)-linked
Fuc (Tretter et al., 1991; Altmann et al., 1998). Certain plant
tissues such as the maize endosperm harbor an endo-glycanase
(ENGase) that is active on oligomannosidic N-glycans and
cleaves within the chitobiose core (Rademacher et al., 2008).
Single GlcNAc residues or chitobiose at N-glycosylation sites
have been detected on plant proteins (Ishimizu et al., 1999; Kim
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et al., 2013; Xu et al., 2016). How abundant those truncated
glycans are and whether they have specific functions or represent
intermediates of degradation pathways remains to be shown.

Oligomannosidic N-glycans are commonly detected with
the lectin concanavalin A (ConA) derived from the jack-bean
Canavalia ensiformis (von Schaewen et al., 1993). Complex and
truncated N-glycans carrying β-(1 → 2)-linked Xyl and/or a
core α-(1→ 3)-linked Fuc residues are detected with antibodies
against horseradish peroxidase (HRP) (Wilson et al., 1998;
Strasser et al., 2004). The Lewis A structure is specifically
recognized by the monoclonal antibody (mAb) JIM84. Bacterial
endo-β-N-acetylglucosaminidase H (Endo H) cleaves within
the unsubstituted chitobiose core to release oligomannosidic
N-glycans from glycoproteins (Tarentino et al., 1974). In contrast
to the PNGase A from almond, PNGase F from Flavobacterium
meningosepticum is inhibited by the presence of core α-(1→ 3)-
linked Fuc (Tretter et al., 1991) and therefore only of limited
use for the deglycosylation of plant glycoproteins decorated with
complex N-glycans.

O-GLYCANS, GTs AND GHs OF PLANT
GLYCOPROTEINS

O-linked glycosylation defines the molecular properties and
biological function of the HRGP superfamily and some secreted
small hormone peptides (e.g., CLE-like peptides). The HRGP
superfamily is traditionally divided into three major subgroups:
AGPs, EXTs including the Leucine-Rich eXtensins (LRXs), and
the repetitive Pro-rich proteins (PRPs) (Seifert and Roberts, 2007;
Ellis et al., 2010; Tan et al., 2012; Hijazi et al., 2014; Johnson et al.,
2017). However, the HRGP superfamily is better understood as
a spectrum of molecules ranging from the highly glycosylated
AGPs to the minimally O-glycosylated PRPs. Two major types of
O-glycans are attached to Hyp (O) in plant glycoproteins. The
first type includes unbranched chains of up to five arabinose
(Ara) units added to clusters of Hyp residues in EXTs (Marzol
et al., 2018) and small CLE-like peptides (Ohyama et al.,
2009; Shinohara and Matsubayashi, 2013). The second type are
complex type II arabino-3,6-galactans (AGs) which are attached
to non-contiguous Hyp residues (AO/SO/TO/VO) on AGPs
and AGP-like proteins (Johnson et al., 2017). Finally, a single
Gal is linked to Ser mostly in EXTs and EXT-related proteins.
The Hyp contiguity hypothesis proposes that the addition of
these two main types of O-glycan is controlled by “glycomotifs”
in the HRGP protein sequence (Kieliszewski, 2001). This
hypothesis predicts that short arabino-oligosaccharides are added
to contiguous Hyp3−5 residues in EXTs, whereas complex
AGs are assembled on clustered but non-contiguous Hyp
residues in AGPs (Shpak et al., 1999; Tan et al., 2010). The only
exception to this rule is CLE-like peptides (e.g., Tob/Tom-
HypSys, PSY1, CLV3, and CLE2), in which non-contiguous Hyp
residues are arabinosylated (Ohyama et al., 2009; Shinohara and
Matsubayashi, 2013). The extent of glycosylation of PRPs remains
unclear with low levels of Ara residues presumably O-linked to
Hyp (Bernhardt and Tierney, 2000).

Arabinogalactan-Proteins-O-glycans and
GTs
Arabinogalactan-proteins are complex cell surface proteoglycans
with type II AG glycan moieties attached at non-contiguous
Hyp residues consisting of a β-(1 → 3)-galactan backbone
substituted at C(O)6 with side chains of β-(1 → 6)-galactan of
variable length decorated further with Ara, and less frequently
also with Fuc, Rha, (O-methyl)glucuronic acid (4-O-MeGlcA)
and Xyl (Figure 2). AGPs have been implicated in a diverse
array of plant growth and development processes including
hormone signaling, cell expansion and division, embryogenesis
of somatic cells, differentiation of xylem, reproduction and
responses to abiotic stress (Seifert and Roberts, 2007; Ellis
et al., 2010; Ma et al., 2018). Recently, it was shown that
perturbing an AG-peptide (AGP21) in Arabidopsis triggers
aberrant root hair development by altering expression of the
homeodomain protein GLABRA 2 (GL2) expression in a BIN2
(a Type-II GSK3-like kinase)-dependent manner, similar to the
phenotype observed in plants with defective brassinosteroid
signaling (Borassi et al., 2020). These results imply an interesting
parallel between plant AGPs and animal heparin sulfate
proteoglycans (HSPGs), which are important co-receptors in
signaling pathways mediated by growth factors, including
members of Wnt/Wingless, Hedgehog, transforming growth
factor−β, and fibroblast growth factor family members (Lin,
2004). AGP4, AGP6, and AGP11 from Arabidopsis have been
shown to be essential for reproduction, with AtAGP4 shown to
play a critical role in synergid degeneration and prevention of
more than one pollen tube being attracted to the embryo sac
(Pereira et al., 2016). AG glycan structures have also been found
to be involved in reproductive development in Torenia fournieri
with a methyl-glucuronosyl arabinogalactan (AMOR) released
from the ovule inducing the competency of the pollen tube to
respond to ovular attractant peptides (Mizukami et al., 2016;
Jiao et al., 2017). UPEX1/KNS4/GALT14, a galactosyltransferase
(GALT) from Arabidopsis that generates the β-(1 → 3)-
galactan backbone of type II AG, has been shown to be
vital for normal pollen exine development as upex1/kns4/galt14
mutants display a collapsed pollen phenotype with reduced
viability and fertility (Suzuki et al., 2017). The requirement for
specific glycan structures on AGPs for Ca2+ signaling during
development is supported by mutants in GlcAT14 members.
AG glycans with reduced glucuronosylation were shown to have
lower Ca2+ binding capacity (Lopez-Hernandez et al., 2020).
Double/triple glcat mutants displayed developmental defects
that could be suppressed by additional Ca+2 in growth media.
Unique glycan structures on AGPs in seagrasses, that include
a high content of terminating 4-O-methyl-GlcA residues, are
proposed to strengthen Ca2+ binding and limit the effects
of salt as an adaptation to the marine environment (Pfeifer
et al., 2020). These few examples demonstrate the indispensable
nature of AGPs to plant processes and the important function
their O-glycan moieties play, although their mechanistic role
continues to remain elusive and ill-defined as recently reviewed
(Seifert, 2020).
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FIGURE 2 | Plant O-glycans. Schematic representation of an average carbohydrate structure of EXTs and AGPs with the GTs and GHs that have been characterized
to date. Illustrated are the complex sugar side chains and the different linkages that are found in the sugar backbone. GHs and GTs are listed in Tables 1, 2 while
probes recognizing specific epitopes in AGPs and EXTs are listed in Table 3. Number in brackets refer to GHs CAZY family. Please also see Silva et al. (2020) for GTs
and GHs acting in AGP O-glycan processing.

In Arabidopsis, O-glycosylation of AGPs is initiated by
a set of 8 Hyp-galactosyltransferases (Hyp-GALTs/HPGTs),
which are members of the GT31 family1 (Lombard et al.,
2014) and designated as GALT2-GALT6 and HPGT1-HPGT3
(also designated as GALT15-GALT17, respectively) (Basu
et al., 2015a,b; Ogawa-Ohnishi and Matsubayashi, 2015)
by different groups (Table 1 and Figure 2). These enzymes
add a single Gal unit to Hyp residues. Other known GTs
include β-(1 → 3)-GalTs also from the GT31 family such as
GALT8, GALT9, KNS4/UPEX1/GALT14, (Qu et al., 2008; Li

1www.cazy.org/

et al., 2012; Suzuki et al., 2017; Ruprecht et al., 2020) and
β-(1→ 6)-galactosyltransferases such as GALT29A from GT29
(Geshi et al., 2013; Dilokpimol et al., 2014) although this
activity is yet to be independently verified. Previously reported
β-(1→ 6)-GalT activity for GALT31A (Geshi et al., 2013) has not
been confirmed, rather it has been shown to possess β-(1→ 3)-
GalT activity (Ruprecht et al., 2020). β-Glucuronosyltransferases
including GlcAT14A-GlcAT14E from the GT14 family (Knoch
et al., 2013; Dilokpimol et al., 2014; Lopez-Hernandez et al.,
2020; Zhang et al., 2020) have been characterized as well as
α-fucosyltransferases (FUT4, FUT6, and FUT7 from GT37)
(Liang et al., 2013; Tryfona et al., 2014, Ruprecht et al., 2020)
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and a β-arabinosyltransferase (Reduced Arabinose Yariv1/RAY1
from GT77) (Gille et al., 2013). Two GlcA methyltransferases
(AtAGM1 and AtAGM2) have also recently been identified
(Temple et al., 2019). Collectively, this body of work highlights
that robust data are required to confidently assign biochemical
function(s) to GTs. Several other GTs involved in type II AG
biosynthesis remain to be identified, including β-(1→ 6)-GalTs
that elongate the side chains and other arabinosyltransferases,
rhamnosyltransferases, and xylosyltransferases that decorate
the non-reducing termini of the galactan chains as well as
additional sugar modifying enzymes. Furthermore, structural
characterization using NMR of artificial AGPs expressed in
tobacco cell suspension cultures indicated kinks of β-(1 → 6)-
linked Gal in the β-(1 → 3)-galactan backbone, suggesting
the existence of additional GTs catalyzing the synthesis of this
linkage (Tan et al., 2004, 2010). Please also see a recent review
by Silva et al. (2020) that has reviewed the GTs acting in AGP
O-glycan processing.

Variability of Type II AG O-Glycans
Compared to the relatively high degree of conservation of
N-glycan structures, O-glycans attached to AGPs display a
considerable degree of variation on every level (Figure 3 and
references there in). There are variations between different
species and tissues and in the same cell type at different stages
of development. The common structural feature of type II AG
that are O-linked to isolated Hyp residues on AGPs is a backbone
of β-(1 → 3) Gal that contains β-(1 → 6) linked Gal side
chains of variable length, although there are examples of β-
(1→ 6) linked Gal backbones (Raju and Davidson, 1994; Dong
and Fang, 2001). In some reports a β-(1 → 6) linked Gal is
further β-(1→ 3) galactosylated forming a kink in the backbone
(Churms et al., 1983; Bacic et al., 1987). Mostly however, the Gal
side chains are modified by α-(1 → 3) linked L-Araf (Tryfona
et al., 2010, 2012 and references therein). Additionally, the side
branches can contain β-(1 → 6) linked GlcA or 4-O-MeGlcA.
The L-Araf side groups are sometimes extended by one or two
α-(1 → 3) linked L-Araf residues and terminated by either α-
(1 → 3) linked L-Araf or α-(1 → 2) linked L-Fuc. In some
cases, the L-Fuc is not the terminal sugar but further modified
by β-(1→ 3) linked D-Xyl. While L-Araf incorporated in plant
cell wall carbohydrates is predominantly found in its furanose
form there have also been reports on L-Arap β-(1 → 3) linked
to Araf or Galp as terminal sugars. Likewise, GlcAp and 4-O-
methyl D-GlcAp are often found as terminal modifications of the
galactan backbone but sometimes GlcA was found decorated by
α-(1→ 4) linked L-Rha. In other cases, another β-(1→ 4) linked
D-GlcA followed and terminated by β-(1→ 4) linked 4-O-methyl
D-GlcAp were linked to this sugar. Another modification of
D-GlcAp was α-(1 → 4) linked L-Rha as the first sugar of
an extended heteropolymer resembling rhamnogalacturonan I.
Besides this staggering multitude of structures attributed to
AGP-linked type II AG, there exists variability in the degree of
substitution of individual Hyp residues as well as the sizes of the
individual glycans. This was demonstrated for artificial AGP-like
fluorescent proteins that showed considerable variations in
apparent molecular weight between different organs (Estevez

et al., 2006). Moreover, the cell-type specific variation between
type II AG structures is elegantly revealed by AGP-glycan specific
monoclonal antibodies (mAbs) (Table 3).

Arabinogalactan-Protein-Glycans
Probes, Abs, and GHs
Characterization of AGP glycan structures is difficult due to
the enormous diversity of protein backbones, the difficulty in
extracting and purifying individual AGPs and the heterogeneity
in their glycan moieties (Tan et al., 2012; Johnson et al., 2017).
NMR techniques require significant amounts of relatively
homogeneous samples and are therefore only rarely used
on natural AGP glycans; for example, on the AGP glycans
from pistils of Nicotiana alata (Gane et al., 1995). The most
successful approaches include performing (i) linkage analyses
of glycans in combination with partial chemical degradation
of the polysaccharides (Pfeifer et al., 2020) and (ii) partial
enzymatic degradation (GHs; Table 2) to analyze resulting
oligosaccharides using carbohydrate gel electrophoresis
(PACE) and MS fragmentation techniques (Tryfona et al.,
2010, 2012). For specific detection of AGPs, β-Glc Yariv
phenylglucoside reagent (1,3,5-tri-(4-β-D-glucopyranosyl-
oxyphenylazo)-2,4,6-trihydroxybenzene) that recognizes and
binds to β-(1 → 3)-Gal-linked oligosaccharides, six residues
or longer, is used. In addition, numerous mAbs against AGP
glycan epitopes are available (Table 3). A group of 36 AGP mAbs
recognize a core set of Gal-β-(1 → 6)-Gal epitopes that are
further sub-divided into three groups defined by side branches
permitted and forbidden for mAb binding (Figure 2; Pattathil
et al., 2010; Ruprecht et al., 2017). In addition, some mAbs
recognize different epitopes, namely a β-(1 → 3)-trigalactosyl
glycan (JIM133), a β-(1 → 6)-trigalactosyl glycan (JIM14) or a
β-(1→ 6)-Gal branched β-(1→ 3)-trigalactosyl glycan (JIM16)
while the terminal β-(1 → 6)-glucuronosyl modification is
recognized by LM2. Furthermore, eel lectin binds to the terminal
α-(1 → 2)-L-Fuc residue modification on AGPs. The binding
epitopes of several AGP-specific mAbs remain to be characterized
(e.g., JIM4, JIM8, JIM13, MAC207, and LM14) (Table 3).

An as yet incomplete list of GHs acting on various linkages in
type II AGs are mainly known from various microbial sources
(Table 3) and are used for their structural characterization.
However, plant endogenous AGP-specific GHs have also been
described. Two family GH43 exo-β-(1 → 3)-galactanases from
Arabidopsis were shown to be required for controlling the
apparent abundance of AGPs and their loss of function resulted
in a sugar-conditional root expansion phenotype characteristic
of many primary cell wall-defective mutants (Nibbering et al.,
2020). Arabidopsis also has three close homologs encoding
family 79 GHs. One member of this family named AtGUS2
was identified in a gel filtration fraction that showed O-
β-glucuronidase activity in vitro (Eudes et al., 2008). A T-DNA
insertion in this locus displayed abnormally short hypocotyls and
overexpression of AtGUS2 enhanced both hypocotyl length and
root length with purified AGPs displaying lower terminal-GlcA
content. Finally, four Arabidopsis loci encode family 27 GHs
named β-L-ARAPASE (APSE), and α-GALACTOSIDASE 1-3
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FIGURE 3 | Arabinogalactan-protein glycan variation. Five structures of type II glycans found on AGPs demonstrating common motifs and variations. (A) This
relatively small glycan was produced on an artificial AGP recombinantly expressed in tobacco cell cultures by Tan et al. (2004). Note the β-(1→ 6) kink in the
β-(1→ 3) galactan backbone. (B) This structure approximates the model described for AGP glycans purified from A. thaliana leaves (Tryfona et al., 2012). Note that
the actual size of many of the glycans is probably much bigger than the structure displayed here. In a later study by the same group, the terminal modification of
L-Fuc by D-Xyl was described (Tryfona et al., 2014). (C) Using the same tools of enzymatic degradation and mass spectrometry, this group also described the
glycan-structure of wheat flour AGP (Tryfona et al., 2010). Again, we show an approximation of their model that should accommodate large variations in glycan size.
A noteworthy feature of this glycan is the occurrence of terminally linked L-Arap. (D) AGP-glycans of the see grass Zostera marina are particularly rich in 4-Me-GlcAp
(Pfeifer et al., 2020). (E) The partial glycan structure of the type II AG linked to an AGP named as APAP1 that is linked to both rhamnogalacturonan 1 (RG1) and
arabinoxylan (AX) (Tan et al., 2013). Legend for sugar symbols is as per Figure 2.

(AGAL1-3) (Imaizumi et al., 2017). Although the majority of
L-Ara found in plant carbohydrates is in its furanose form
some examples of L-arabinopyranose (Arap) exist, one example
being found in type II AGs (Tryfona et al., 2010). It was

suggested that APSE and the AGALs act on these residues
(Imaizumi et al., 2017), and apse agal3 mutants showed decreased
β-L-arabinopyranosidase activity and increased levels of β-L-
Arap, compared to wild type. Apart from a decrease in hypocotyl
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length, the apse agal3 mutants appeared phenotypically normal.
Finally, a promiscuous α-L-arabinofuranosidase/β-D-xylosidase
belonging to family GH3 has been purified and cloned from
radish (Kotake et al., 2006]. However, since the Ara and Xyl
residues exist in various carbohydrates it is presently unknown
whether any of the fifteen Arabidopsis GH3 enzymes act as AGP-
specific α-L-arabinofuranosidases. In addition, please see Silva
et al. (2020) for GHs, both endogenous and heterologous, acting
on type-II AG glycans of AGPs.

Extensins-Glycans, GTs, and GHs
Extensins are characterized by repetitive Ser-Hyp3−5 repeats,
where the contiguous Hyp residues are substituted with up to 4–5
units of L-Araf with the following structure Hyp-O-(4→ 1)-β-L-
Araf -(2 → 1)-β-L-Araf -(2 → 1)-β-L-Araf -(3 → 1)-α-L-term
Araf ; the linkage of the fifth Ara residue is not yet resolved
(Velasquez et al., 2011; Møller et al., 2017), and the Ser is
substituted with D-Gal as Ser-O-(1 → 3)-α-Galp (Saito et al.,
2014) (Figure 2). EXTs and secreted signaling peptides require
the conversion of specific peptidyl-proline residues to trans-4-
Hyp by prolyl-4-hydroxylase (P4H) enzymes (Table 1). P4H
enzymes are 2-oxoglutarate (2OG) dioxygenases that catalyze
the formation of trans-4-Hyp from peptidyl-Pro (Koski et al.,
2007, 2009). In root cells, P4H5 is the main P4H that initiates
the hydroxylation of some Pro residues in EXTs, whereas P4H2
and P4H13 complete the hydroxylation on these contiguous
Pro residues (Velasquez et al., 2011, 2015b). The first Araf is
added by Hyp-O-β-arabinosyltransferase 1-3 (HPAT1-HPAT3),
which belong to the GT95 family (Ogawa-Ohnishi et al., 2013).
Reduced Residual Arabinose 1–3 (RRA1-RRA3) enzymes of the
GT77 family are thought to transfer the second Araf (Egelund
et al., 2007; Velasquez et al., 2011), while the third residue
addition is catalyzed by Xyloglucanase113 (XEG113), which also
belongs to the GT77 family (Gille et al., 2009). XEG113 was first
identified in a screen of mutagenized Arabidopsis plants subjected
to growth in liquid media in the presence of a xyloglucanase
with xeg113 plants exhibiting more elongated hypocotyls than
WT, providing genetic evidence that extensin arabinosylation
is important for cell elongation (Gille et al., 2009). Finally,
Extensin Arabinose Deficient (ExAD) transfers the fourth Araf
residue with a α-(1 → 3) linkage. ExAD belongs to clade-E of
the inverting GT47 family (Møller et al., 2017) (Table 1). The
arabinosyltransferase that adds the fifth and final Ara unit has not
yet been identified (Velasquez et al., 2011). On the other hand,
O-arabinosylation with β-linked-L-arabinofuranosyltransferases
at Hyp also takes place in the short signaling peptides of the CLE-
like family using identical linkages/stereochemistry as used for
the innermost three Araf residues found in the EXTs (Ito et al.,
2006; Ohyama et al., 2009; Matsuzaki et al., 2010), suggesting
that similar P4Hs and GTs might participate in these post-
translational modifications. A single Serine-galactosyltransferase
(SGT1/SerGT1) adds Gal to Ser in the repeated Ser-Hyp3−5 motif
in EXTs (Saito et al., 2014). SerGT1 is the first example of a GT
in the context of protein glycosylation with type-I membrane
protein topology (i.e., N-terminal catalytic domain within the
Golgi lumen) with no homology to known GTs, indicating that it
is a novel plant-specific GT of the GT96 family (Table 1). Several

EXT-specific mAbs are used to detect EXT epitopes but these
epitopes remain to be structurally characterized (e.g., JIM11,
JIM12, JIM19, JIM20, LM1) (see Table 3; Rydahl et al., 2018 and
references therein).

Several GHs from different bacterial sources have been
described that hydrolyze specific linkages within O-glycans
of EXTs (Table 2). The GH127 enzyme from Xanthomonas
euvesicatoria XeHypBA1 was described as a β-L-(1 → 2)-
arabinofuranosidase (Nakamura et al., 2018) while two GH121
members, one from Bifidobacterium bifidum HypBA2 and
XeHypBA2, were shown to hydrolyze the β-L-Araf -(2 → 1)
linkages (Fujita et al., 2011, 2014; Nakamura et al., 2018).
Finally, an α-L-(1 → 3)-arabinofuranosidase XeHypAA is able
to hydrolyze β-L-Araf -(3 → 1)-α-L-Araf (Nakamura et al.,
2018) (Table 2 and Figure 2). It is unclear if endogenous
β-arabinofuranosidases are encoded by plant genomes, and if so
whether they are secreted into the apoplast to regulate the length
of EXTs O-glycans.

Decoding EXTs and Their O-Glycans
Functions
It is already known that O-glycans increase HRGP solubility,
resistance to proteolytic degradation and thermal stability (Shpak
et al., 2001; Kieliszewski et al., 2011; Lamport et al., 2011; Seifert,
2020). EXTs are able to form, at least in vitro, a tridimensional
covalent network through diTyr-linkages mediated by EXT
peroxidases between individual EXT molecules and also via
self-recognition and alignment of hydrophilic O-glycosylated
Ser-(Hyp)3−4 repeats and hydrophobic peptide-cross-linking
modules (Cannon et al., 2008). Thus, the ordered EXT monomer
assembly in plant cell walls would involve a zipper-like endwise
association via cross-linking at the ends of the molecules
(Kieliszewski et al., 2011; Lamport et al., 2011). Recently,
modeling experiments suggested that classical EXTs would be
able to form a putative triple helix structure by lateral staggered
alignment (Cannon et al., 2008) and diTyr cross-linking, similar
to that present in collagen (Velasquez et al., 2015b; Marzol
et al., 2018). It is also proposed that EXTs interact with pectins
by a simple acid-base reaction forming a supramolecular ionic
structure in the nascent cell wall (Valentin et al., 2010), which
would serve as a framework for further cell wall deposition
(Cannon et al., 2008; Lamport et al., 2011). In addition, covalent
EXT-pectin cross-links were also suggested (Nuñez et al., 2009).
However, it is unclear how EXT monomers are secreted and
assembled into the glyco-network and how EXT and related
glycoproteins-pectin interactions are controlled in a coordinated
way during new cell wall formation.

Several mutants in O-glycosylation GTs of EXTs and related
proteins (e.g., LRXs) have similarities to root hair-defective
growth phenotypes (Velasquez et al., 2011; 2015b) and EXT
content and their O-glycosylation levels were correlated with
cotton fiber cell elongation (Guo et al., 2019), highlighting
that O-glycans in EXTs affect EXT function during plant cell
expansion. Furthermore, an in vitro study has revealed that both
Ser-O-galactosylation and Hyp-O-arabinosylation determine the
rate of EXT crosslinking and hence the efficiency of EXT network
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formation (Chen et al., 2015). Thus, correct arabinosylation
of EXTs is essential for their in vivo functions. In addition,
some of these mutants (e.g., rra2 and xeg113) showed enhanced
susceptibility for specific root pathogens (Castilleux et al.,
2020). The known roles of EXTs in cell wall assembly, cell
shape and growth raises the question to the function of each
individual EXT molecule (Hall and Cannon, 2002; Cannon et al.,
2008; Velasquez et al., 2011). Although the Arabidopsis genome
encodes several EXTs, so far only a single EXT mutant rsh
(for root shoot hypocotyl-defective)/ext3) have a nearly lethal
phenotype (Cannon et al., 2008). This finding suggests either
the high redundancy or masked functions of EXTs in plant
development, although their role in root hairs, pollen tubes
and root growth are clear exceptions to this rule. Several EXT
mutants (ext6-7/12-14/18) (Velasquez et al., 2011) and lrx1/2
mutants have aberrant root hair morphologies (Baumberger
et al., 2001, 2003a,b; Ringli, 2010) and prp3 (Bernhardt and
Tierney, 2000) display short root hairs. Characterization of
multiple mutants for pollen LRXs (lrx8/9/10/11) indicates they
are key components for proper polar growth as sentinels of
cell wall integrity in these rapidly expanding cells (Fabrice
et al., 2018; Wang et al., 2017; Sede et al., 2018; Herger et al.,
2019) while the triple mutant lrx3/4/5 showed defects in cell
expansion in root cells (Draeger et al., 2015), possibly mediated
by abnormal vacuolar expansion (Dünser et al., 2019). Recently,
a mechanism of action for LRXs was proposed based on LRX8
and LRX9 binding in the apoplast to the Rapid Alkalinization
Factor 4-19 (RALF4 and RALF19) peptides as well as to the
extracellular domains of some transmembrane receptors such
as CrRLK1Ls (e.g., ANX1,2 and BUDS1,2) (Ge et al., 2017;
Mecchia et al., 2017). In a similar manner, the extracellular
LRX3/4/5-RALF22/23 together with CrRLK1L FERONIA (FER)
are able to coordinate growth under salt conditions (Zhao
et al., 2018, 2020) and LRX1/5-RALF1-FER in shoot and root
growth (Dünser et al., 2019; Herger et al., 2020). It has been
proposed that LRXs work together with CrRLK1Ls and RALF
peptides to monitor the plant cell wall integrity status during
cell growth (Ge et al., 2017; Mecchia et al., 2017; Dünser
et al., 2019; Herger et al., 2020). Although the structural basis
for the interaction between LRXs and RALFs peptides was
recently established (Moussu et al., 2020), it is unclear how the
O-glycans in the EXT domain of LRXs affects these protein-
protein interactions. Since the EXT domain is variable among
LRXs both in terms of length and motif (Baumberger et al.,
2003a,b; Borassi et al., 2016), it is proposed that it has adapted
to the specific cell wall architecture of the numerous tissues
where they are located as putative cell wall integrity sensors
(Baumberger et al., 2003a,b; Marzol et al., 2018; Sede et al., 2018;
Herger et al., 2019).

CHEMICAL SYNTHESIS, GLYCAN
ARRAYS AND TECHNOLOGICAL
CHALLENGES

The tremendous heterogeneity of plant cell wall glycans such
as the O-glycans in AGPs make the identification of the exact

molecular structures that serve either as acceptors for GTs,
substrates for GHs or epitopes for mAbs very challenging. There
are basically two options to procure suitable oligosaccharide
samples for biochemical assays used in GT functional studies.
One possibility is purification of oligosaccharides from digests
of natural polysaccharides or glycoproteins, which can provide
a large number of oligosaccharides in acceptable time, but
oftentimes with compromised purity and in limited quantities
(Tan et al., 2012). The second possibility is chemical synthesis,
which gives access to significant amounts of well-defined and
pure oligosaccharides but is very time consuming (Kinnaert
et al., 2017; Pfrengle, 2017). Automated glycan assembly (AGA)
can significantly accelerate the process of chemical synthesis
for a number a glycan classes (Seeberger, 2015). In AGA,
protected monosaccharide building blocks are coupled in a
stepwise manner to a linker-functionalized Merrifield resin, in
a computer-controlled and automated manner. While many
different complex oligosaccharides have been synthesized by
AGA, only recently has it begun to be explored for synthesizing
plant glycans, including AGP O-glycans (Bartetzko and Pfrengle,
2019). Chemically synthesized glycans as well as natural
polysaccharides and isolated oligosaccharides can be printed as
glycan arrays to obtain high-throughput platforms for analyzing
plant cell wall-related enzymes and molecular probes such as
mAbs (Møller et al., 2008; Pedersen et al., 2012). A recently
developed glycan array equipped with chemically synthesized
plant cell wall glycans, including many AGP glycan related
substrates, has proven useful for the rapid characterization of
a large number of cell wall glycan-directed mAbs (Ruprecht
et al., 2017). The same glycan array has also aided in identifying
acceptor substrates for GTs involved in AGP glycan biosynthesis
such as GalT31A and FUT7 (Figure 4; Ruprecht et al., 2020).
By extension, this technology has the potential to reveal the
biochemical function of novel GTs that act in the O-glycosylation
pathway of plant HRGPs and other glycoproteins.

PERSPECTIVES AND FUTURE
CHALLENGES IN PLANT
GLYCOBIOLOGY

Major developments in nuclease-based gene editing, quantitative
transcriptomics, metabolomics, and proteomics are now enabling
high throughput approaches to explore plant protein and lipid
glycosylation through analyzing and targeting enzymes involved
in glycosylation processes. Although there has been significant
progress in plant glycobiology, there are still many remaining
fundamental questions to be addressed. Here, we attempt to
highlight some selected aspects that are key to accelerating
progress in this field:

• In vivo N- and O-glycan mapping. The chemical reporter
strategy known as bio-orthogonal click chemistry has arisen
as a powerful methodology to investigate the dynamics and
functions of non-genetically encoded biomolecules such
as sialylated (Chang et al., 2009; Laughlin and Bertozzi,
2009; Mbua et al., 2013), fucosylated (Hsu et al., 2007;

Frontiers in Plant Science | www.frontiersin.org 12 February 2021 | Volume 12 | Article 640919

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-640919 February 16, 2021 Time: 17:27 # 13

Strasser et al. N- and O-Glycosylation Pathways in Plant Cells

FIGURE 4 | Glycan array assay for GT characterization. Glass slides equipped with plant cell wall-related oligosaccharides are incubated with azido-functionalized
sugar nucleotides and GT candidates expressed in, for example human embryonic kidney (HEK) 293 cells. Any transferred monosaccharide is visualized by
azide-alkyne cycloaddition reaction with a fluorescent dye to determine reactive acceptors (reprinted from Ruprecht et al., 2020).

Laughlin and Bertozzi, 2009; Besanceney-Webler et al.,
2011), and mucin-type O-linked glycans (Laughlin and
Bertozzi, 2009; Baskin et al., 2010) in live cells and model
organisms (Prescher and Bertozzi, 2005; Grammel and
Hang, 2013). This approach relies on the labeling of specific
sugars by feeding cells with a synthetic monosaccharide
analog carrying a chemical reporter that is then reacted
with a probe (e.g., a fluorophore suitable for fluorescent
microscopy imaging) in living systems to locate/visualize
the incorporated reporter. Despite the fast-growing number
of examples of this potent method in animal cells, reports
describing its use in plant biology are surprisingly few
(Anderson et al., 2012; Dumont et al., 2016; Zhu et al., 2016;
Zhu and Chen, 2017). In part, this is due to the capacity of
these probes to penetrate the cell wall barrier and, in part,
due to the limited diversity of sugar analogs available to
replace the endogenous sugars that need to be transported
into the plant cell, and incorporated into glycan structures
by GTs in a similar manner. Other new technologies are
being developed to directly perform imaging of single
glycan molecules that are isolated by mass-selective, soft-
landing electrospray ion beam deposition and imaged
by low-temperature scanning tunneling microscopy (Wu
et al., 2020). This generates glycan structures at the single-
molecule and single cell levels to directly relate how
molecular structure correlates with properties – a step
forward toward cracking the “sugar code.”
• GT activity characterization by glycan arrays. The use of

glycan arrays equipped with oligosaccharide acceptors,
in combination with expressed GT/GH candidates,
may significantly accelerate the identification and
characterization of further GTs/GHs responsible for
plant glycosylation/modulation in the future. To enable
rapid progress in this area, intensive research on the
chemical and/or enzymatic synthesis of oligosaccharide
acceptors and sugar nucleotide donors as well as on
high-yielding production of active GT candidates in
different expression systems is required. In this direction,
a JBEI (The Joint BioEnergy Institute) GT Collection with
almost 500 GTs from Arabidopsis and rice were cloned

in-frame into Gateway technology compatible vectors to
readily enable downstream applications (Lao et al., 2014).
Either more collective resources from our laboratories
(a major barrier for individual groups when research
funding is scarce) or commercial intervention (which
would require the same importance placed on plant biology
as medical research where such resources are provided)
are necessary to drive functional genomic approaches in
plant glycobiology.
• Structural diversity in N- and O-glycans present in

plant glycoproteins. Although some progress has been
made recently, the precise N-glycan composition of
individual native plant glycoproteins from different cells
or tissues is only partially known (Xu et al., 2016;
Zeng et al., 2018). Future efforts will aim to obtain a
more comprehensive picture on N-glycan composition
within specific glycoproteins to identify distinct N-glycan
structures that are causative for a specific phenotype. In
the same vein, determining functional roles for individual
HRGP O-glycoproteins has been hampered by our failure
to directly characterize each of these complex O-glycan
structures. Only few studies have been able to purify
AGPs and analyze their glycan structural variations in
detail (Tan et al., 2004; Tryfona et al., 2010, 2012, 2014;
Pfeifer et al., 2020). Biochemical characterization needs
to be linked to detailed functional studies (e.g., site-
directed mutagenesis). In general, functional validation
is experimentally much more complex as well as time-
consuming compared to the biochemical quantitation of
the O-glycosylation levels. Furthermore, small changes in
O-glycosylation in AGPs/FLAs and in EXTs can result in
either activation or inactivation of their in vivo functions
and can have an effect on their subcellular localization
targeting (Velasquez et al., 2015b; Xue et al., 2017; Borassi
et al., 2020; Seifert, 2020), so the functional relevance of
each event cannot directly be inferred from large-scale
quantitative analysis. A dual convergent approach between
both enzymology/biochemistry and genetics is required
to address this important aspect of plant glycoprotein
structural diversity at the single cell level.
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• Overcome functional genetic redundancy of plant
glycoproteins. Addressing genetic redundancy and
functional overlap might be achieved by using
multiplex CRISPR-CAS9/genome editing/gene knock-
out technology. Some recent reports have used this
approach to overcome functional redundancy in AGPs
(Moreira et al., 2020) and in GTs (e.g., GLCATs)
acting on AGPs (Zhang et al., 2020). This might
be extended to investigate their function in other
plant species.
• Plant glycoproteome-interactome. Finding new proteins

associated with plant glycoproteins, plant GTs and
GHs will expand our knowledge on the regulatory
aspects of plant glycobiology. New techniques such
as proximity labeling (e.g., APEX, TurboID, etc.)
together with the existing tools for detecting in vivo
protein-protein interactions (e.g., BiFC, TriFC, FRET,
etc.) will allow us to improve our plant glycobiology
interactome inventory. Deeper integration of the N-and
O-glycosylation pathway into the broader context of
plant cell biology and systems biology is necessary.
We envisage the development of a broad atlas of
glycomes across plant tissues and cell types to integrate

protein glycosylation features into plant gene and
protein databases.
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