245 research outputs found
Multiscale Modeling of Influenza A Virus Infection Supports the Development of Direct-Acting Antivirals
Influenza A viruses are respiratory pathogens that cause seasonal epidemics with up to 500,000 deaths each year. Yet there are currently only two classes of antivirals licensed for treatment and drug-resistant strains are on the rise. A major challenge for the discovery of new anti-influenza agents is the identification of drug targets that efficiently interfere with viral replication. To support this step, we developed a multiscale model of influenza A virus infection which comprises both the intracellular level where the virus synthesizes its proteins, replicates its genome, and assembles new virions and the extracellular level where it spreads to new host cells. This integrated modeling approach recapitulates a wide range of experimental data across both scales including the time course of all three viral RNA species inside an infected cell and the infection dynamics in a cell population. It also allowed us to systematically study how interfering with specific steps of the viral life cycle affects virus production. We find that inhibitors of viral transcription, replication, protein synthesis, nuclear export, and assembly/release are most effective in decreasing virus titers whereas targeting virus entry primarily delays infection. In addition, our results suggest that for some antivirals therapy success strongly depends on the lifespan of infected cells and, thus, on the dynamics of virus-induced apoptosis or the host's immune response. Hence, the proposed model provides a systems-level understanding of influenza A virus infection and therapy as well as an ideal platform to include further levels of complexity toward a comprehensive description of infectious diseases
Balloon kyphoplasty in malignant spinal fractures: a systematic review and meta-analysis
<p>Abstract</p> <p>Background</p> <p>Spinal fractures are a common source of morbidity in cancer patients. Balloon Kyphoplasty (BKP) is a minimally invasive procedure designed to stabilize fractures and correct vertebral deformities. We performed a meta-analysis to determine the efficacy and safety of BKP for spinal fractures in cancer patients.</p> <p>Methods</p> <p>We searched several electronic databases up to September 2008 and the reference lists of relevant publications for studies reporting on BKP in patients with spinal fractures secondary to osteolytic metastasis and multiple myeloma. Outcomes sought included pain relief, functional capacity, quality of life, vertebral height, kyphotic angle and adverse events. Studies were assessed for methodological bias, and estimates of effect were calculated using a random-effects model. Potential reasons for heterogeneity were explored.</p> <p>Results</p> <p>The literature search revealed seven relevant studies published from 2003 to 2008, none of which were randomized trials. Analysis of those studies indicated that BKP resulted in less pain and better functional outcomes, and that these effects were maintained up to 2 years post-procedure. While BKP also improved early vertebral height loss and spinal deformity, these effects were not long-term. No serious procedure-related complications were described. Clinically asymptomatic cement leakage occurred in 6% of all treated levels, and new vertebral fractures in 10% of patients. While there is a lack of studies comparing BKP to other interventions, some data suggested that BKP provided similar pain relief as vertebroplasty and a lower cement leakage rate.</p> <p>Conclusion</p> <p>It appears that there is level III evidence showing BKP is a well-tolerated, relatively safe and effective technique that provides early pain relief and improved functional outcomes in patients with painful neoplastic spinal fractures. BKP also provided long-term benefits in terms of pain and disability. However, the methodological quality of the original studies prevents definitive conclusions being drawn. Further investigation into the use of BKP for spinal fractures in cancer patients is warranted.</p
Fate of Enrofloxacin in Lake Sediment : Biodegradation, Transformation Product Identification, and Ecotoxicological Implications
Various pharmaceutical drugs are being detected in different environmental compartments such as surface waters, groundwater, and sediment; a major concern since they are biologically active substances which can interfere with biological systems affecting the native biota. Among these drugs, antimicrobials are especially worrisome mainly due to the development of bacterial resistance. The aims of this study were to investigate if enrofloxacin, an emergent antibiotic pollutant, could be biodegraded in lake sediment, identify its break down products and to determine if these products have antimicrobial properties or are toxic. Three biodegradation products were identified and the antibiotic susceptibility assay proved that the products formed did not display antibiotic effects. Ecotoxicity testing with green algae suggested that the degradation products do not cause adverse effects statistically. However, it is suggested that further investigations are needed to identify the mechanism of degradation and the microbes involved.Peer reviewe
Incidence of fracture in adjacent levels in patients treated with balloon kyphoplasty: a review of the literature
The available evidence suggests that the treatment of painful vertebral compression fractures (VCFs) secondary to osteoporosis or multiple myeloma, by cement augmentation with balloon kyphoplasty (BK), is both safe and effective. However, there is uncertainty in the literature concerning the potential of the procedure to influence the risk for adjacent segment fracture. The aim of this article is to review the available peer-reviewed literature, regarding adjacent vertebral body fractures after kyphoplasty augmentation
Percutaneous vertebral compression fracture management with polyethylene mesh-contained morcelized allograft bone
Study design A comprehensive systematic review of the literature. Objectives To assess the modern literature on the use of polyethylene mesh-contained morcelized allograft (PMCMA) bone for spinal fusion and vertebral compression fracture management. Summary of background data There are presently no systematic reviews of PMCMA. Methods A systematic literature review was performed within three databases (OVID, PubMed, and Google Scholar) using the following keyword search terms: vertebroplasty, kyphoplasty, vertebral compression fracture, percutaneous, polyethylene mesh, and osteoporosis. Results The initial search identified 764 items, from which two pertinent technique-based articles were identified. There were no published scientific peer-reviewed or case series reporting the clinical results of this technique. The use of PMCMA in the management of vertebral compression fractures (VCFs) is similar to vertebroplasty and kyphoplasty. This novel, percutaneous system uses the properties of granular mechanics to establish a conforming, semirigid graft that is purportedly capable of withstanding physiologic loads. Discussion PMCMA is a novel percutaneous technology for the management of VCF and possibly for use as a conforming interbody graft. The available published literature lacks outcome data of the use of PMCMA. Careful, independent research is needed to assess the viability of this technology and its long-term results
Anaerobic granular sludge as a biocatalyst for 1,3-propanediol production from glycerol in continuous bioreactors
1,3-propanediol (1,3-PDO) was produced from glycerol in three parallel Expanded Granular Sludge Blanket (EGSB) reactors inoculated with granular sludge (control reactor-R1), heat-treated granular sludge (R2) and disrupted granular sludge (R3) at Hydraulic Retention Times (HRT) between 3 and 24 h. Maximum 1,3-PDO yield (0.52 mol mol-1) and productivity (57 g L-1 d-1) were achieved in R1 at HRTs of 12 h and 3 h, respectively. DGGE profiling of PCR-amplified 16S rRNA gene fragments showed that variations in the HRT had a critical impact in the dominant community of microorganisms. However, no appreciable differences in the bacterial population were observed between R2 and R3 at low HRTs. Production of H2 was observed at the beginning of the operation, but no methane production was observed. This study proves the feasibility of 1,3-PDO production in EGSB reactors and represents a novel strategy to valorise glycerol generated in the biodiesel industry.The financial support given to Roberto Gallardo from Fundacao da Ciencia e da Tecnologia (ref SFRH/BD/42900/2008) is gratefully acknowledged. The authors thank the MIT- Portugal Program for the support given to R. Gallardo and C. Faria
Balloon kyphoplasty in the treatment of metastatic disease of the spine: a 2-year prospective evaluation
There is currently little data on the longer term efficacy and safety of balloon kyphoplasty (BKP) in patients with metastatic vertebral compression fractures (VCFs). To prospectively assess the long-term efficacy and safety of BKP in treating thoracic and lumbar spinal metastatic fractures that result in pain or instability. Sixty-five patients (37 men, mean age: 66 years) underwent 99 BKP procedures. Patient-related outcomes of pain visual analogue scale (VAS) and Oswestry Disability Index were assessed pre- and post-operatively and after 3, 6, 12 and 24 months. Correction of vertebral height and kyphotic deformity were assessed by radiographic measurements. Mean pain VAS and Oswestry Disability Index significantly improved from pre- to post-treatment (P < 0.0001), this improvement being sustained up to 24-month follow up. A gain in height restoration and a reduction of the post-operative kyphotic angle were seen post-operatively and at 3 months although these radiographic outcomes returned to pre-operative levels at 12 months. BKP was associated with a rate of cement leakage and incidence vertebral fracture of 12 and 8%, respectively. No symptomatic cement leaks or serious adverse events were seen during the 24 months of follow up. BKP is a minimally invasive procedure that provides immediate and long-term pain relief and improvement in functional ability in selected patients with metastatic VCFs. The procedure appears to have good long-term safety
The Interactive Effects of Ammonia and Microcystin on Life-History Traits of the Cladoceran Daphnia magna: Synergistic or Antagonistic?
The occurrence of Microcystis blooms is a worldwide concern that has caused numerous adverse effects on water quality and lake ecology. Elevated ammonia and microcystin concentrations co-occur during the degradation of Microcystis blooms and are toxic to aquatic organisms; we studied the relative and combined effects of these on the life history of the model organism Daphnia magna. Ammonia and microcystin-LR treatments were: 0, 0.366, 0.581 mg L−1 and 0, 10, 30, 100 µg L−1, respectively. Experiments followed a fully factorial design. Incubations were 14 d and recorded the following life-history traits: number of moults, time to first batch of eggs, time to first clutch, size at first batch of eggs, size at first clutch, number of clutches per female, number of offspring per clutch, and total offspring per female. Both ammonia and microcystin were detrimental to most life-history traits. Interactive effects of the toxins occurred for five traits: the time to first batch of eggs appearing in the brood pouch, time to first clutch, size at first clutch, number of clutches, and total offspring per female. The interactive effects of ammonia and microcystin appeared to be synergistic on some parameters (e.g., time to first eggs) and antagonistic on others (e.g., total offspring per female). In conclusion, the released toxins during the degradation of Microcystis blooms would result, according to our data, in substantially negative effect on D. magna
- …