2,013 research outputs found

    Boundary quantum critical phenomena with entanglement renormalization

    Get PDF
    We extend the formalism of entanglement renormalization to the study of boundary critical phenomena. The multi-scale entanglement renormalization ansatz (MERA), in its scale invariant version, offers a very compact approximation to quantum critical ground states. Here we show that, by adding a boundary to the scale invariant MERA, an accurate approximation to the critical ground state of an infinite chain with a boundary is obtained, from which one can extract boundary scaling operators and their scaling dimensions. Our construction, valid for arbitrary critical systems, produces an effective chain with explicit separation of energy scales that relates to Wilson's RG formulation of the Kondo problem. We test the approach by studying the quantum critical Ising model with free and fixed boundary conditions.Comment: 8 pages, 12 figures, for a related work see arXiv:0912.289

    Ocupação tardia e o desenvolvimento da agropecuária no Estado de Rondônia Uma história da bovinocultura no desenvolvimento regional.

    Get PDF
    Neste artigo se discute a ocupação tardia e sem planejamento de Rondônia e sua influência na bovinocultura. É uma pesquisa bibliográfica e qualitativa na qual foram levantadas informações sobre penetração do gado bovino no Estado do século XVIII ao XXI cujo objetivo é mostrar a configuração da atividade no desenvolvimento regional. Extraiu-se que somente a partir da década de setenta a criação de gado tornou-se importante para a economia regional, mas faltaram políticas públicas de ordenação e planejamento do território ocupado, tornando-a uma atividade competitiva. Aqui as baixas tecnologias provocaram a substituição da floresta pela criação extensiva, e sabe-se que na exploração bovina feita de forma correta poucos danos se verificam em sua área de atuação

    Dual-function artificial molecular motors performing rotation and photoluminescence

    Get PDF
    Molecular machines have caused one of the greatest paradigm shifts in chemistry, and by powering artificial mechanical molecular systems and enabling autonomous motion, they are expected to be at the heart of exciting new technologies. One of the biggest challenges that still needs to be addressed is designing the involved molecules to combine different orthogonally controllable functions. Here, we present a prototype of artificial molecular motors exhibiting the dual function of rotary motion and photoluminescence. Both properties are controlled by light of different wavelengths or by exploiting motors’ outstanding two-photon absorption properties using low-intensity near-infrared light. This provides a noninvasive way to both locate and operate these motors in situ, essential for the application of molecular machines in complex (bio)environments

    Some Experiments on the influence of Problem Hardness in Morphological Development based Learning of Neural Controllers

    Get PDF
    Natural beings undergo a morphological development process of their bodies while they are learning and adapting to the environments they face from infancy to adulthood. In fact, this is the period where the most important learning pro-cesses, those that will support learning as adults, will take place. However, in artificial systems, this interaction between morphological development and learning, and its possible advantages, have seldom been considered. In this line, this paper seeks to provide some insights into how morphological development can be harnessed in order to facilitate learning in em-bodied systems facing tasks or domains that are hard to learn. In particular, here we will concentrate on whether morphological development can really provide any advantage when learning complex tasks and whether its relevance towards learning in-creases as tasks become harder. To this end, we present the results of some initial experiments on the application of morpho-logical development to learning to walk in three cases, that of a quadruped, a hexapod and that of an octopod. These results seem to confirm that as task learning difficulty increases the application of morphological development to learning becomes more advantageous.Comment: 10 pages, 4 figure

    A Theory of Cheap Control in Embodied Systems

    Full text link
    We present a framework for designing cheap control architectures for embodied agents. Our derivation is guided by the classical problem of universal approximation, whereby we explore the possibility of exploiting the agent's embodiment for a new and more efficient universal approximation of behaviors generated by sensorimotor control. This embodied universal approximation is compared with the classical non-embodied universal approximation. To exemplify our approach, we present a detailed quantitative case study for policy models defined in terms of conditional restricted Boltzmann machines. In contrast to non-embodied universal approximation, which requires an exponential number of parameters, in the embodied setting we are able to generate all possible behaviors with a drastically smaller model, thus obtaining cheap universal approximation. We test and corroborate the theory experimentally with a six-legged walking machine. The experiments show that the sufficient controller complexity predicted by our theory is tight, which means that the theory has direct practical implications. Keywords: cheap design, embodiment, sensorimotor loop, universal approximation, conditional restricted Boltzmann machineComment: 27 pages, 10 figure

    Limitations on the superposition principle: superselection rules in non-relativistic quantum mechanics

    Get PDF
    The superposition principle is a very basic ingredient of quantum theory. What may come as a surprise to many students, and even to many practitioners of the quantum craft, is tha superposition has limitations imposed by certain requirements of the theory. The discussion of such limitations arising from the so-called superselection rules is the main purpose of this paper. Some of their principal consequences are also discussed. The univalence, mass and particle number superselection rules of non-relativistic quantum mechanics are also derived using rather simple methods.Comment: 22 pages, no figure

    Avaliação de protocolo curto (5 d) de IATF em bovinos de corte.

    Get PDF
    O objetivo deste trabalho foi testar um protocolo curto (5d) de sincronização de cio e ovulação utilizando dispositivo intravaginal de P4 (CIDR) sem uso de estradiol no início tratamento (D0), em bovinos de corte submetidos a um programa de IATF.bitstream/item/125338/1/CT-140-gado-de-corte-Pfeifer.pd

    Evolution of dopant-induced helium nanoplasmas

    Get PDF
    Two-component nanoplasmas generated by strong-field ionization of doped helium nanodroplets are studied in a pump-probe experiment using few-cycle laser pulses in combination with molecular dynamics simulations. High yields of helium ions and a pronounced, droplet size-dependent resonance structure in the pump-probe transients reveal the evolution of the dopant-induced helium nanoplasma. The pump-probe dynamics is interpreted in terms of strong inner ionization by the pump pulse and resonant heating by the probe pulse which controls the final charge states detected via the frustration of electron-ion recombination

    Quantum Energy Inequalities in Pre-Metric Electrodynamics

    Get PDF
    Pre-metric electrodynamics is a covariant framework for electromagnetism with a general constitutive law. Its lightcone structure can be more complicated than that of Maxwell theory as is shown by the phenomenon of birefringence. We study the energy density of quantized pre-metric electrodynamics theories with linear constitutive laws admitting a single hyperbolicity double-cone and show that averages of the energy density along the worldlines of suitable observers obey a Quantum Energy Inequality (QEI) in states that satisfy a microlocal spectrum condition. The worldlines must meet two conditions: (a) the classical weak energy condition must hold along them, and (b) their velocity vectors have positive contractions with all positive frequency null covectors (we call such trajectories `subluminal'). After stating our general results, we explicitly quantize the electromagnetic potential in a translationally invariant uniaxial birefringent crystal. Since the propagation of light in such a crystal is governed by two nested lightcones, the theory shows features absent in ordinary (quantized) Maxwell electrodynamics. We then compute a QEI bound for worldlines of inertial `subluminal' observers, which generalizes known results from the Maxwell theory. Finally, it is shown that the QEIs fail along trajectories that have velocity vectors which are timelike with respect to only one of the lightcones
    corecore