225 research outputs found

    Increased respiratory morbidity associated with exposure to a mature volcanic plume from a large Icelandic fissure eruption.

    Get PDF
    The 2014-15 Holuhraun eruption in Iceland was the largest fissure eruption in over 200 years, emitting prodigious amounts of gas and particulate matter into the troposphere. Reykjavík, the capital area of Iceland (250 km from eruption site) was exposed to air pollution events from advection of (i) a relatively young and chemically primitive volcanic plume with a high sulphur dioxide gas (SO2) to sulphate PM (SO42-) ratio, and (ii) an older and chemically mature volcanic plume with a low SO2/SO42- ratio. Whereas the advection and air pollution caused by the primitive plume were successfully forecast and forewarned in public advisories, the mature plume was not. Here, we show that exposure to the mature plume is associated with an increase in register-measured health care utilisation for respiratory disease by 23% (95% CI 19.7-27.4%) and for asthma medication dispensing by 19.3% (95% CI 9.6-29.1%). Absence of public advisories is associated with increases in visits to primary care medical doctors and to the hospital emergency department. We recommend that operational response to volcanic air pollution considers both primitive and mature types of plumes

    Globally Significant CO2 Emissions From Katla, a Subglacial Volcano in Iceland

    Get PDF
    Volcanoes are a key natural source of CO2, but global estimates of volcanic CO2 flux are predominantly based on measurements from a fraction of world's actively degassing volcanoes. We combine high-precision airborne measurements from 2016 and 2017 with atmospheric dispersion modeling to quantify CO2 emissions from Katla, a major subglacial volcanic caldera in Iceland that last erupted 100 years ago but has been undergoing significant unrest in recent decades. Katla's sustained CO2 flux, 12–24 kt/d, is up to an order of magnitude greater than previous estimates of total CO2 release from Iceland's natural sources. Katla is one of the largest volcanic sources of CO2 on the planet, contributing up to 4% of global emissions from nonerupting volcanoes. Further measurements on subglacial volcanoes worldwide are urgently required to establish if Katla is exceptional, or if there is a significant previously unrecognized contribution to global CO2 emissions from natural sources

    The European Volcano Observatories and their use of the aviation colour code system

    Get PDF
    Volcano observatories (VOs) around the world are required to maintain surveillance of their volcanoes and inform civil protection and aviation authorities about impending eruptions. They often work through consolidated procedures to respond to volcanic crises in a timely manner and provide a service to the community aimed at reducing the potential impact of an eruption. Within the International Airways Volcano Watch (IAVW) framework of the International Civil Aviation Organisation (ICAO), designated State Volcano Observatories (SVOs) are asked to operate a colour coded system designed to inform the aviation community about the status of a volcano and the expected threats associated. Despite the IAVW documentation defining the different colour-coded levels, operating the aviation colour code in a standardised way is not easy, as sometimes, different SVOs adopt different strategies on how, when, and why to change it. Following two European VOs and Volcanic Ash Advisory Centres (VAACs) workshops, the European VOs agreed to present an overview on how they operate the aviation colour code. The comparative analysis presented here reveals that not all VOs in Europe use this system as part of their operational response, mainly because of a lack of volcanic eruptions since the aviation colour code was officially established, or the absence of a formal designation as an SVO. We also note that the VOs that do regularly use aviation colour code operate it differently depending on the frequency and styles of eruptions, the historical eruptive activity, the nature of the unrest, the monitoring level, institutional norms, previous experiences, and on the agreement they may have with the local Air Transport Navigation providers. This study shows that even though the aviation colour code system was designed to provide a standard, its usage strongly depends on the institutional subjectivity in responding to volcano emergencies. Some common questions have been identified across the different (S)VOs that will need to be addressed by ICAO to have a more harmonised approach and usage of the aviation colour code

    The climatic effects of modifying cirrus clouds in a climate engineering framework

    No full text
    The climatic effects of climate engineering—or geoengineering—via cirrus cloud thinning are examined. Thinner cirrus clouds can allow more outgoing longwave radiation to escape to space, potentially cooling the climate. The cloud properties and climatic effects due to perturbing the ice crystal fall speed are investigated in a set of hemispheric scale sensitivity experiments with the Community Earth System Model. It is found that increasing the ice crystal fall speed, as an analog to cirrus cloud seeding, depletes high-level clouds and reduces the longwave cloud forcing. Deliberate depletion of cirrus clouds increases outgoing longwave radiation, reduces the upper tropospheric water vapor, and cools the climate. Global cirrus cloud thinning gave a net cloud forcing change of −1.55 W m−2 and a global annual mean temperature change of −0.94 K. Though there is negligible change in the global annual mean precipitation (−0.001 mm/d), the spatially nonhomogeneous forcing induces circulation changes and hence remote climate changes. Climate engineering the Southern Hemisphere only results in a northward shift of the Intertropical Convergence Zone and possible Sahelian drought alleviation, while targeting the Northern Hemisphere alone causes a greater cooling. It was found that targeting cirrus clouds everywhere outside of the tropics results in changes to the circulation and precipitation even in the nonclimate engineered regions, underscoring the risks of remote side effects and indeed the complexity of the climate system

    Cirrus cloud seeding has potential to cool climate

    No full text
    Cirrus clouds, thin ice clouds in the upper troposphere, have a net warming effect on Earth's climate. Consequently, a reduction in cirrus cloud amount or optical thickness would cool the climate. Recent research indicates that by seeding cirrus clouds with particles that promote ice nucleation, their lifetimes and coverage could be reduced. We have tested this hypothesis in a global climate model with a state-of-the-art representation of cirrus clouds and find that cirrus cloud seeding has the potential to cancel the entire warming caused by human activity from pre-industrial times to present day. However, the desired effect is only obtained for seeding particle concentrations that lie within an optimal range. With lower than optimal particle concentrations, a seeding exercise would have no effect. Moreover, a higher than optimal concentration results in an over-seeding that could have the deleterious effect of prolonging cirrus lifetime and contributing to global warming

    Modeling lava flow propagation over a flat landscape by using MrLavaLoba: the case of the 2014–2015 eruption at Holuhraun, Iceland

    No full text
    During the emplacement of the 2014-2015 lava flow in Holuhraun (Iceland) a newcode for the simulation of lava flows (MrLavaLoba) was developed and tested. MrLavaLoba is a probabilistic code which derives the area likely to be inundated and the thickness of the final lava deposit. The flow field in Holuhraun progressed through a fairly flat floodplain, and the initial limited availability of topographic data was challenging, forcing us to develop specific modeling strategies. The development of the code, as well as simulation tests, continued after the end of the eruption, and latest results largely benefitted from the availability of improved topographic data. MrLavaLoba simulations of the Holuhraun scenario are compared with detailed observational analyses derived from the literature. The obtained results highlight that small-scale morphological features in the pre-emplacement topography can strongly influence the propagation of the flow. The distribution of the volume settling throughout the extension of the flow field turned out to be very important, and strongly affects the fit between the simulated and the real extent of the flow field. The performed analysis suggests that an improvement in the code should allow adaptable calibration during the course of the eruption in order to mimic different emplacement styles in different phases.

    The European Volcano Observatories and their use of the aviation colour code system

    No full text
    International audienceAbstract Volcano observatories (VOs) around the world are required to maintain surveillance of their volcanoes and inform civil protection and aviation authorities about impending eruptions. They often work through consolidated procedures to respond to volcanic crises in a timely manner and provide a service to the community aimed at reducing the potential impact of an eruption. Within the International Airways Volcano Watch (IAVW) framework of the International Civil Aviation Organisation (ICAO), designated State Volcano Observatories (SVOs) are asked to operate a colour coded system designed to inform the aviation community about the status of a volcano and the expected threats associated. Despite the IAVW documentation defining the different colour-coded levels, operating the aviation colour code in a standardised way is not easy, as sometimes, different SVOs adopt different strategies on how, when, and why to change it. Following two European VOs and Volcanic Ash Advisory Centres (VAACs) workshops, the European VOs agreed to present an overview on how they operate the aviation colour code. The comparative analysis presented here reveals that not all VOs in Europe use this system as part of their operational response, mainly because of a lack of volcanic eruptions since the aviation colour code was officially established, or the absence of a formal designation as an SVO. We also note that the VOs that do regularly use aviation colour code operate it differently depending on the frequency and styles of eruptions, the historical eruptive activity, the nature of the unrest, the monitoring level, institutional norms, previous experiences, and on the agreement they may have with the local Air Transport Navigation providers. This study shows that even though the aviation colour code system was designed to provide a standard, its usage strongly depends on the institutional subjectivity in responding to volcano emergencies. Some common questions have been identified across the different (S)VOs that will need to be addressed by ICAO to have a more harmonised approach and usage of the aviation colour code

    Rapid shifting of a deep magmatic source at Fagradalsfjall volcano, Iceland

    No full text
    AbstractRecent Icelandic rifting events have illuminated the roles of centralized crustal magma reservoirs and lateral magma transport1–4, important characteristics of mid-ocean ridge magmatism1,5. A consequence of such shallow crustal processing of magmas4,5 is the overprinting of signatures that trace the origin, evolution and transport of melts in the uppermost mantle and lowermost crust6,7. Here we present unique insights into processes occurring in this zone from integrated petrologic and geochemical studies of the 2021 Fagradalsfjall eruption on the Reykjanes Peninsula in Iceland. Geochemical analyses of basalts erupted during the first 50 days of the eruption, combined with associated gas emissions, reveal direct sourcing from a near-Moho magma storage zone. Geochemical proxies, which signify different mantle compositions and melting conditions, changed at a rate unparalleled for individual basaltic eruptions globally. Initially, the erupted lava was dominated by melts sourced from the shallowest mantle but over the following three weeks became increasingly dominated by magmas generated at a greater depth. This exceptionally rapid trend in erupted compositions provides an unprecedented temporal record of magma mixing that filters the mantle signal, consistent with processing in near-Moho melt lenses containing 107–108 m3 of basaltic magma. Exposing previously inaccessible parts of this key magma processing zone to near-real-time investigations provides new insights into the timescales and operational mode of basaltic magma systems.</jats:p

    Reaction path models of magmatic gas scrubbing

    Get PDF
    Gas–water–rock reactions taking place within volcano-hosted hydrothermal systems scrub reactive, water-soluble species (sulfur, halogens) from the magmatic gas phase, and as such play a major control on the composition of surface gas manifestations. A number of quantitative models of magmatic gas scrubbing have been proposed in the past, but no systematic comparison of model results with observations from natural systems has been carried out, to date. Here, we present the results of novel numerical simulations, in which we initialized models of hydrothermal gas–water–rock at conditions relevant to Icelandic volcanism. We focus on Iceland as an example of a “wet” volcanic region where scrubbing is widespread. Our simulations were performed (using the EQ3/6 software package) at shallow (temperature 100 °C. We find that this range of model gas compositions reproduces well the (H2O-CO2-STOT) compositional range of reservoir waters and surface gas emissions in Iceland. From this validation of the model in an extreme end-member environment of high scrubbing, we conclude that EQ3/6-based reaction path simulations offer a realistic representation of gas–water–rock interaction processes occurring underneath active magmatic-hydrothermal systems
    • 

    corecore