467 research outputs found
Corrigendum to âPollen-based paleoenvironmental and paleoclimatic change at Lake Ohrid (south-eastern Europe) during the past 500 kaâ published in Biogeosciences, 13, 1423â1437, 2016
In this corrigendum we report an updated pollen record from the Lake Ohrid DEEP site spanning the past 500 ka whereby we have reprocessed and re-analyzed 104 samples affected by chemical procedure problems that occurred in one palynological laboratory. Firstly, these samples were affected by the use of wrong containers, causing in- adequate settling of particles at the set centrifuging speed. Secondly, HCl and HF treatments were combined without the prescribed intermediate centrifuging and decanting steps. The inaccuracy in the protocol resulted in the loss of smaller pollen grains and in the overrepresentation of bisaccate ones in most of the re-analyzed samples. We therefore provide an updated set of figures with the new data and have revised the description of the results, discussion and conclusions re- ported in Sadori et al. (2016) where necessary. We stress that the majority of the original results and conclusions remain valid, while the recordsâ reliability and resolution have improved as 12 samples that had been omitted in the original study because of low count sums are now included in the revised dataset (Sadori et al., 2018)
Pollen-based reconstruction of Holocene vegetation and climate in Southern Italy: the case of Lago di Trifoglietti
International audienceA high-resolution pollen record from Lago Trifoglietti in Calabria (southern Italy) provides new insights into the paleoenvironmental and palaeoclimatic changes which characterise the Holocene period in the southern Italy. The chronology is based on 11 AMS radiocarbon dates from terrestrial organic material. The Holocene history of the vegetation cover shows the persistence of an important and relatively stable Fagus forest present over that entire period, offering a rare example of a beech woodstand able to withstand climate changes for more than 11 000 yr. Probably in relation with early Holocene dry climate conditions which affected southern Italy, the Trifoglietti pollen record supports a southward delay in thermophyllous forest expansion dated to ca. 13 500 cal BP at Monticchio, ca. 11 000 cal BP at Trifoglietti, and finally ca. 9800 cal BP in Sicily. Regarding the human impact history, the Trifoglietti pollen record shows only poor imprints of agricultural activities and anthopogenic indicators, apart from those indicating pastoralism activities beneath forest cover. The selective exploitation of Abies appears to have been the strongest human impact on the Trifoglietti surroundings. On the basis of (1) a specific ratio between hygrophilous and terrestrial taxa, and (2) the Modern Analogue Technique, the pollen data collected at Lago Trifoglietti led to the establishment of two palaeoclimatic records tracing changes in (1) lake depth and (2) annual precipitation. On a millennial scale, these records give evidence of increasing moisture from ca. 11 000 to ca. 9400 cal BP and maximum humidity from ca. 9400 to ca. 6200 cal BP, prior to a general trend towards the drier climate conditions that have prevailed up to the present. In addition, several successive centennial-scale oscillations appear to have punctuated the entire Holocene. The identification of a cold dry event around 11 300 cal BP, responsible for a marked decline in timberline altitude and possibly equivalent to the PBO, remains to be confirmed by further investigations verifying both chronology and magnitude. Two cold and possibly drier Boreal oscillations developed at ca. 9800 and 9200 cal BP. At Trifoglietti, the 8.2 kyr event corresponds to the onset of cooler and drier climatic conditions which persisted until ca. 7500 cal BP. Finally, the second half of the Holocene was characterised by dry phases at ca. 6100â5200, 4400â3500, and 2500â1800 cal BP, alternating with more humid phases at ca. 5200â4400 and ca. 3500â2500 cal BP. Considered as a whole, these millennial-scale trends and centennial-scale climatic oscillations support contrasting patterns of palaeohydrological changes recognised between the north- and south-central Mediterranean
Pollen-based temperature and precipitation changes in the Ohrid Basin (western Balkans) between 160 and 70 ka
Our study aims to reconstruct climate changes that occurred at Lake Ohrid
(south-western Balkan Peninsula), the oldest extant lake in Europe, between
160 and 70 ka (covering part of marine isotope stage 6, MIS 6; all of MISÂ 5;
and the beginning of MISÂ 4). A multi-method approach, including the âModern
Analog Techniqueâ and the âWeighted Averaging Partial Least-Squares Regressionâ, is
applied to the high-resolution pollen sequence of the DEEP site, collected
from the central part of Lake Ohrid, to provide quantitative estimates of
climate and bioclimate parameters. This allows us to document climatic change
during the key periods of MISÂ 6 and MISÂ 5 in southern Europe, a region where
accurate climate reconstructions are still lacking for this time interval.
Our results for the penultimate glacial show cold and dry conditions, while the onset of
the âlast interglacialâ is characterized by wet and warm conditions, with temperatures
higher than today (by ca. 2 âC). The Eemian also shows the well-known climatic
tri-partition in the Balkans, with an initial pre-temperate phase of abrupt warming
(128â121 ka), a central temperate phase with decreasing temperatures associated with
wet conditions (121â118 ka), followed by a post-temperate phase of progressive change
towards cold and dry conditions (118â112 ka).
After the Eemian, an alternation of four warm/wet periods with cold/dry
ones, likely related to the succession of Greenland stadials and cold events
known from the North Atlantic, occurred. The observed pattern is also
consistent with hydrological and isotopic data from the central
Mediterranean.
The Lake Ohrid climate reconstruction shows greater similarity with climate
patterns inferred from northern European pollen records than with southern
European ones, which is probably due to its intermediate position and the
mountainous setting. However, this hypothesis needs further testing as very
few climate reconstructions are available for southern Europe for this key
time period.</p
Using the past to constrain the future: how the palaeorecord can improve estimates of global warming
Climate sensitivity is defined as the change in global mean equilibrium
temperature after a doubling of atmospheric CO2 concentration and provides a
simple measure of global warming. An early estimate of climate sensitivity,
1.5-4.5{\deg}C, has changed little subsequently, including the latest
assessment by the Intergovernmental Panel on Climate Change.
The persistence of such large uncertainties in this simple measure casts
doubt on our understanding of the mechanisms of climate change and our ability
to predict the response of the climate system to future perturbations. This has
motivated continued attempts to constrain the range with climate data, alone or
in conjunction with models. The majority of studies use data from the
instrumental period (post-1850) but recent work has made use of information
about the large climate changes experienced in the geological past.
In this review, we first outline approaches that estimate climate sensitivity
using instrumental climate observations and then summarise attempts to use the
record of climate change on geological timescales. We examine the limitations
of these studies and suggest ways in which the power of the palaeoclimate
record could be better used to reduce uncertainties in our predictions of
climate sensitivity.Comment: The final, definitive version of this paper has been published in
Progress in Physical Geography, 31(5), 2007 by SAGE Publications Ltd, All
rights reserved. \c{opyright} 2007 Edwards, Crucifix and Harriso
Corrigendum to âPollen-based paleoenvironmental and paleoclimatic change at Lake Ohrid (south-eastern Europe) during the past 500 kaâ published in Biogeosciences, 13, 1423â1437, 2016
In this corrigendum we report an updated pollen record from the Lake Ohrid DEEP site spanning the past 500 ka whereby we have reprocessed and re-analyzed 104 samples affected by chemical procedure problems that occurred in one palynological laboratory. Firstly, these samples were affected by the use of wrong containers, causing in- adequate settling of particles at the set centrifuging speed. Secondly, HCl and HF treatments were combined without the prescribed intermediate centrifuging and decanting steps. The inaccuracy in the protocol resulted in the loss of smaller pollen grains and in the overrepresentation of bisaccate ones in most of the re-analyzed samples. We therefore provide an updated set of figures with the new data and have revised the description of the results, discussion and conclusions re- ported in Sadori et al. (2016) where necessary. We stress that the majority of the original results and conclusions remain valid, while the recordsâ reliability and resolution have improved as 12 samples that had been omitted in the original study because of low count sums are now included in the revised dataset (Sadori et al., 2018)
Modes of Disintegration of Solid Foods in Simulated Gastric Environment
A model stomach system was used to investigate disintegration of various foods in simulated gastric environment. Food disintegration modes and typical disintegration profiles are summarized in this paper. Mechanisms contributing to the disintegration kinetics of different foods were investigated as related to acidity, temperature, and enzymatic effect on the texture and changes in microstructure. Food disintegration was dominated by either fragmentation or erosion, depending on the physical forces acting on food and the cohesive force within the food matrix. The internal cohesive forces changed during digestion as a result of water penetration and acidic and enzymatic hydrolysis. When erosion was dominant, the disintegration data (weight retention vs. disintegration time) may be expressed with exponential, sigmoidal, and delayed-sigmoidal profiles. The different profiles are the result of competition among the rates of water absorption, texture softening, and erosion. A linear-exponential equation was used to describe the different disintegration curves with good fit. Acidity and temperature of gastric juice showed a synergistic effect on carrot softening, while pepsin was the key factor in disintegrating high-protein foods. A study of the change of carrot microstructure during digestion indicated that degradation of the pectin and cell wall was responsible for texture softening that contributed to the sigmoidal profile of carrot disintegration
Recommended from our members
What have we learnt from palaeoclimate simulations?
There has been a gradual evolution in the way that palaeoclimate modelling and palaeoenvironmental data are used together to understand how the Earth System works, from an initial and largely descriptive phase through explicit hypothesis testing to diagnosis of underlying mechanisms. Analyses of past climate states are now regarded as integral to the evaluation of climate models, and have become part of the toolkit used to assess the likely realism of future projections. Palaeoclimate assessment has demonstrated that changes in large-scale features of climate that are governed by the energy and water balance show consistent responses to changes in forcing in different climate states, and these consistent responses are reproduced by climate models. However, state-of-the-art models are still largely unable to reproduce observed changes in climate at a regional scale reliably. While palaeoclimate analyses of state-of-the-art climate models suggest an urgent need for model improvement, much work is also needed on extending and improving palaeoclimate reconstructions and quantifying and reducing both numerical and interpretative uncertainties
Multidisciplinary approach to reconstructing local pastoral activities: an example from the Pyrenean Mountains (Pays Basque)
International audienceIn this study archaeology, history and palaeoecology (modern and fossil data sets of pollen and nonpollen palynomorphs) were used to reconstruct small-scale pastoral activities in the Pyrenees Mountains during the last two millennia. Modern pollen assemblages from the major vegetation units (both natural andanthropogenic) are studied on one restricted watershed area. A correlative model (RDA) of 61 modern pollen spectra and 35 external variables distinguishes two groups of taxa, providing information on the nature and spatial extent of human impact on the landscape. The first pool indicates local pastoral activities, and the second one implies regional input from outside the studied watershed, and is not characteristic of a specific land use. These pools are described as 'Local Pastoral Pollen Indicators' (LPPI) for this particular mountain region on crystalline bedrock and 'Regional Human Activities Pollen Indicators' (RHAPI). The modern data set is used to aid interpretation of the local pollen sequence of Sourzay that covers the last 2000 calendar years BP, using RDA reconstructions, and best modern analogues as a means of comparing modern and fossil spectra. The study also demonstrates agreement between the independent interpretations of two fossil proxies, LPPI and coprophilous fungi
Evidence for an association between migraine and the hypocretin receptor 1 gene
The aim of our study was to investigate whether genetic variants in the hypocretin receptor 1 (HCRTR1) gene could modify the occurrence and the clinical features of migraine. Using a caseâcontrol strategy we genotyped 384 migraine patients and 259 controls for three SNPs in the HCRTR1 gene. Genotypic and allelic frequencies of the rs2271933 non-synonymous polymorphism resulted different (Ï2 = 9.872, p = 0.007; Ï2 = 8.108, p = 0.004) between migraineurs and controls. The carriage of the A allele was associated with an increased migraine risk (OR 1.42, 95% CI 1.11â1.81). When we divided the migraine patients into different subgroups, the difference reached the level of statistical significance only in migraine without aura. The different genotypes had no significant effect on the examined clinical characteristics of the disease. In conclusion, our data supports the hypothesis that the HCRTR1 gene could represent a genetic susceptibility factor for migraine without aura and suggests that the hypocretin system may have a role in the pathophysiology of migraine
Reconstructing 15 000Â years of southern France temperatures from coupled pollen and molecular (branched glycerol dialkyl glycerol tetraether) markers (Canroute, Massif Central)
Climatic changes in southern Europe during the Holocene are characterized by a strong spatial and temporal heterogeneity whose patterns are still poorly understood, notably the presence or not of a Holocene thermal maximum (HTM; 10â000â6000âcalâBP). The climatic patterns also differ according to the proxies used (e.g. pollen, chironomid) and the latitude of the record. Here, a multi-proxy approach combining pollen and lipid biomarkers (branched glycerol dialkyl glycerol tetraethers, brGDGTs) is applied to the Canroute sedimentological sequence (Massif Central, France) to reconstruct the climatic variation over the last 15â000Â years in southern Europe. This area is poorly documented in terms of vegetation and climate change. To provide reliable climate reconstructions, we have (1)Â performed a multi-method approach applied to pollen (modern analogue technique, MAT; weighted averaging partial least squares regression, WA-PLS; boosted regression trees, BRT; and random forest, RF) and molecular biomarkers brGDGTs (five calibrations) and (2)Â investigated the role of modern databases and calibrations in climate reconstructions. Three different databases were tested for pollen data: one global database based on a Eurasian pollen database and two regional databases corresponding to MediterraneanâTemperate Europe and Temperate EuropeâScandinavian databases respectively. Five global calibrations were tested for lipid biomarkers including four for soil and one for peat. Results show that the use of different modern databases highlights the importance of considering environmental and ecological constraints when using transfer functions on pollen sequences. Pollen- and brGDGT-inferred climate trends are consistent, notably for the Late Glacial and the Early and Late Holocene. However, the reconstructions notably differ concerning the presence of a Holocene thermal maximum with the MAT pollen-based method, but no difference is apparent with the BRT pollen method nor brGDGT. The temperature reconstructions estimated from the two independent pollen and lipid proxies are then compared to regional climate signals (chironomids, pollen, molecular biomarkers) to better understand global regional climatic patterns in southern Europe. Altogether, our results from the Canroute sequence and those already available in southern Europe reveal that for the Late Glacial and Early Holocene, the regional climate trends are consistent between sites and proxies, supporting the reliability of their reconstructions despite some discrepancies. During the Holocene, the temperature signal of Canroute does not indicate the clear presence of a pronounced HTM, but rather stable temperatures.</p
- âŠ