27 research outputs found

    DeepReGraph co-clusters temporal gene expression and cis-regulatory elements through heterogeneous graph representation learning

    Get PDF
    This work presents DeepReGraph, a novel method for co-clustering genes and cis-regulatory elements (CREs) into candidate regulatory networks. Gene expression data, as well as data from three CRE activity markers from a publicly available dataset of mouse fetal heart tissue, were used for DeepReGraph concept proofing. In this study we used open chromatin accessibility from ATAC-seq experiments, as well as H3K27ac and H3K27me3 histone marks as CREs activity markers. However, this method can be executed with other sets of markers. We modelled all data sources as a heterogeneous graph and adapted a state-of-the-art representation learning algorithm to produce a low-dimensional and easy-to-cluster embedding of genes and CREs. Deep graph auto-encoders and an adaptive-sparsity generative model are the algorithmic core of DeepReGraph. The main contribution of our work is the design of proper combination rules for the heterogeneous gene expression and CRE activity data and the computational encoding of well-known gene expression regulatory mechanisms into a suitable objective function for graph embedding. We showed that the co-clusters of genes and CREs in the final embedding shed light on developmental regulatory mechanisms in mouse fetal-heart tissue. Such clustering could not be achieved by using only gene expression data. Function enrichment analysis proves that the genes in the co-clusters are involved in distinct biological processes. The enriched transcription factor binding sites in CREs prioritize the candidate transcript factors which drive the temporal changes in gene expression. Consequently, we conclude that DeepReGraph could foster hypothesis-driven tissue development research from high-throughput expression and epigenomic data. Full source code and data are available on the DeepReGraph GitHub project

    Molecular Characterization of HOXA2 and HOXA3 Binding Properties

    Get PDF
    From MDPI via Jisc Publications RouterHistory: accepted 2021-11-30, pub-electronic 2021-12-03Publication status: PublishedFunder: SPARC (Scheme for Promotion of Academic and Research Collaboration) and UKIERI (United Kingdom India Research Initiative); Grant(s): project P657Funder: Biotechnology and Biological Sciences Research Council; Grant(s): BB/N00907X/1 and BB/T007761/1The highly conserved HOX homeodomain (HD) transcription factors (TFs) establish the identity of different body parts along the antero−posterior axis of bilaterian animals. Segment diversification and the morphogenesis of different structures is achieved by generating precise patterns of HOX expression along the antero−posterior axis and by the ability of different HOX TFs to instruct unique and specific transcriptional programs. However, HOX binding properties in vitro, characterised by the recognition of similar AT-rich binding sequences, do not account for the ability of different HOX to instruct segment-specific transcriptional programs. To address this problem, we previously compared HOXA2 and HOXA3 binding in vivo. Here, we explore if sequence motif enrichments observed in vivo are explained by binding affinities in vitro. Unexpectedly, we found that the highest enriched motif in HOXA2 peaks was not recognised by HOXA2 in vitro, highlighting the importance of investigating HOX binding in its physiological context. We also report the ability of HOXA2 and HOXA3 to heterodimerise, which may have functional consequences for the HOX patterning function in vivo

    HOX paralogs selectively convert binding of ubiquitous transcription factors into tissue-specific patterns of enhancer activation [preprint]

    Get PDF
    Gene expression programs determine cell fate in embryonic development and their dysregulation results in disease. Transcription factors (TFs) control gene expression by binding to enhancers, but how TFs select and activate their target enhancers is still unclear. HOX TFs share conserved homeodomains with highly similar sequence recognition properties, yet they impart the identity of different animal body parts. To understand how HOX TFs control their specific transcriptional programs in vivo, we compared HOXA2 and HOXA3 binding profiles in the mouse embryo. HOXA2 and HOXA3 directly cooperate with TALE TFs and selectively target different subsets of a broad TALE chromatin platform. Binding of HOX and tissue-specific TFs convert low affinity TALE binding into high confidence, tissue-specific binding events, which bear the mark of active enhancers. We propose that HOX paralogs, alone and in combination with tissue-specific TFs, generate tissue-specific transcriptional outputs by modulating the activity of TALE TFs at selected enhancers

    Analysis of chromatin organization and gene expression in T cells identifies functional genes for rheumatoid arthritis

    Get PDF
    From Springer Nature via Jisc Publications RouterHistory: received 2019-10-22, accepted 2020-08-06, registration 2020-08-11, pub-electronic 2020-09-02, online 2020-09-02, collection 2020-12Publication status: PublishedFunder: RCUK | MRC | Medical Research Foundation; doi: https://doi.org/10.13039/501100009187; Grant(s): MR/N00017X/1Funder: Arthritis Research UK; doi: https://doi.org/10.13039/501100000341; Grant(s): 21754Abstract: Genome-wide association studies have identified genetic variation contributing to complex disease risk. However, assigning causal genes and mechanisms has been more challenging because disease-associated variants are often found in distal regulatory regions with cell-type specific behaviours. Here, we collect ATAC-seq, Hi-C, Capture Hi-C and nuclear RNA-seq data in stimulated CD4+ T cells over 24 h, to identify functional enhancers regulating gene expression. We characterise changes in DNA interaction and activity dynamics that correlate with changes in gene expression, and find that the strongest correlations are observed within 200 kb of promoters. Using rheumatoid arthritis as an example of T cell mediated disease, we demonstrate interactions of expression quantitative trait loci with target genes, and confirm assigned genes or show complex interactions for 20% of disease associated loci, including FOXO1, which we confirm using CRISPR/Cas9

    A spatio-temporally constrained gene regulatory network directed by PBX1/2 acquires limb patterning specificity via HAND2.

    Get PDF
    A lingering question in developmental biology has centered on how transcription factors with widespread distribution in vertebrate embryos can perform tissue-specific functions. Here, using the murine hindlimb as a model, we investigate the elusive mechanisms whereby PBX TALE homeoproteins, viewed primarily as HOX cofactors, attain context-specific developmental roles despite ubiquitous presence in the embryo. We first demonstrate that mesenchymal-specific loss of PBX1/2 or the transcriptional regulator HAND2 generates similar limb phenotypes. By combining tissue-specific and temporally controlled mutagenesis with multi-omics approaches, we reconstruct a gene regulatory network (GRN) at organismal-level resolution that is collaboratively directed by PBX1/2 and HAND2 interactions in subsets of posterior hindlimb mesenchymal cells. Genome-wide profiling of PBX1 binding across multiple embryonic tissues further reveals that HAND2 interacts with subsets of PBX-bound regions to regulate limb-specific GRNs. Our research elucidates fundamental principles by which promiscuous transcription factors cooperate with cofactors that display domain-restricted localization to instruct tissue-specific developmental programs

    Dynamic changes in the epigenomic landscape regulate human organogenesis and link to developmental disorders

    Get PDF
    From Springer Nature via Jisc Publications RouterHistory: received 2019-10-04, accepted 2020-06-18, registration 2020-06-24, pub-electronic 2020-08-06, online 2020-08-06, collection 2020-12Publication status: PublishedFunder: RCUK | Medical Research Council (MRC); doi: https://doi.org/10.13039/501100000265; Grant(s): CRTF, PhD studentship, MR/J003352/1, MR/L009986/1, MR/L009986/1, MR/S036121/1, MR/000638/1Funder: Academy of Medical Sciences; doi: https://doi.org/10.13039/501100000691; Grant(s): Lecturer starter grantFunder: Wellcome Trust (Wellcome); doi: https://doi.org/10.13039/100004440; Grant(s): 088566, 097820, 105610Abstract: How the genome activates or silences transcriptional programmes governs organ formation. Little is known in human embryos undermining our ability to benchmark the fidelity of stem cell differentiation or cell programming, or interpret the pathogenicity of noncoding variation. Here, we study histone modifications across thirteen tissues during human organogenesis. We integrate the data with transcription to build an overview of how the human genome differentially regulates alternative organ fates including by repression. Promoters from nearly 20,000 genes partition into discrete states. Key developmental gene sets are actively repressed outside of the appropriate organ without obvious bivalency. Candidate enhancers, functional in zebrafish, allow imputation of tissue-specific and shared patterns of transcription factor binding. Overlaying more than 700 noncoding mutations from patients with developmental disorders allows correlation to unanticipated target genes. Taken together, the data provide a comprehensive genomic framework for investigating normal and abnormal human development

    COMODO: an adaptive coclustering strategy to identify conserved coexpression modules between organisms

    Get PDF
    Increasingly large-scale expression compendia for different species are becoming available. By exploiting the modularity of the coexpression network, these compendia can be used to identify biological processes for which the expression behavior is conserved over different species. However, comparing module networks across species is not trivial. The definition of a biologically meaningful module is not a fixed one and changing the distance threshold that defines the degree of coexpression gives rise to different modules. As a result when comparing modules across species, many different partially overlapping conserved module pairs across species exist and deciding which pair is most relevant is hard. Therefore, we developed a method referred to as conserved modules across organisms (COMODO) that uses an objective selection criterium to identify conserved expression modules between two species. The method uses as input microarray data and a gene homology map and provides as output pairs of conserved modules and searches for the pair of modules for which the number of sharing homologs is statistically most significant relative to the size of the linked modules. To demonstrate its principle, we applied COMODO to study coexpression conservation between the two well-studied bacteria Escherichia coli and Bacillus subtilis. COMODO is available at: http://homes.esat.kuleuven.be/∼kmarchal/Supplementary_Information_Zarrineh_2010/comodo/index.html

    Molecular Characterization of HOXA2 and HOXA3 Binding Properties

    No full text
    The highly conserved HOX homeodomain (HD) transcription factors (TFs) establish the identity of different body parts along the antero–posterior axis of bilaterian animals. Segment diversification and the morphogenesis of different structures is achieved by generating precise patterns of HOX expression along the antero–posterior axis and by the ability of different HOX TFs to instruct unique and specific transcriptional programs. However, HOX binding properties in vitro, characterised by the recognition of similar AT-rich binding sequences, do not account for the ability of different HOX to instruct segment-specific transcriptional programs. To address this problem, we previously compared HOXA2 and HOXA3 binding in vivo. Here, we explore if sequence motif enrichments observed in vivo are explained by binding affinities in vitro. Unexpectedly, we found that the highest enriched motif in HOXA2 peaks was not recognised by HOXA2 in vitro, highlighting the importance of investigating HOX binding in its physiological context. We also report the ability of HOXA2 and HOXA3 to heterodimerise, which may have functional consequences for the HOX patterning function in vivo
    corecore