1,635 research outputs found
The contribution of electrostatic interactions to the collapse of oligoglycine in water
Protein solubility and conformational stability are a result of a balance of
interactions both within a protein and between protein and solvent. The
electrostatic solvation free energy of oligoglycines, models for the peptide
backbone, becomes more favorable with an increasing length, yet longer peptides
collapse due to the formation of favorable intrapeptide interactions between CO
dipoles, in some cases without hydrogen bonds. The strongly repulsive solvent
cavity formation is balanced by van der Waals attractions and electrostatic
contributions. In order to investigate the competition between solvent
exclusion and charge interactions we simulate the collapse of a long
oligoglycine comprised of 15 residues while scaling the charges on the peptide
from zero to fully charged. We examine the effect this has on the
conformational properties of the peptide. We also describe the approximate
thermodynamic changes that occur during the scaling both in terms of
intrapeptide potentials and peptide-water potentials, and estimate the
electrostatic solvation free energy of the system.Comment: 10 pages, 7 figure
Automatic assembly design project 1968/9 :|breport of economic planning committee
Investigations into automatic assembly systems have
been carried out. The conclusions show the major
features to be considered by a company operating
the machine to assemble the contact block with regard
to machine output and financial aspects.
The machine system has been shown to be economically
viable for use under suitable conditions, but the
contact block is considered to be unsuitable for
automatic assembly.
Data for machine specification, reliability and
maintenance has been provided
Power Relationships in Two Web-based Courses
This study examined the experiences of ten adult distance learners enrolled in on-line undergraduate business management courses. The frameworks of Rogers and Giddens have relevance for these distance learners who displayed strategies for exerting agency over time, proximity, and authority in order to maintain, obtain, surrender, or share control
The morphology of the Milky Way - II. Reconstructing CO maps from disc galaxies with live stellar distributions
The arm structure of the Milky Way remains somewhat of an unknown, with
observational studies hindered by our location within the Galactic disc. In the
work presented here we use smoothed particle hydrodynamics (SPH) and radiative
transfer to create synthetic longitude-velocity observations. Our aim is to
reverse-engineer a top down map of the Galaxy by comparing synthetic
longitude-velocity maps to those observed. We set up a system of N-body
particles to represent the disc and bulge, allowing for dynamic creation of
spiral features. Interstellar gas, and the molecular content, is evolved
alongside the stellar system. A 3D-radiative transfer code is then used to
compare the models to observational data. The resulting models display arm
features that are a good reproduction of many of the observed emission
structures of the Milky Way. These arms however are dynamic and transient,
allowing for a wide range of morphologies not possible with standard density
wave theory. The best fitting models are a much better match than previous work
using fixed potentials. They favour a 4-armed model with a pitch angle of
approximately 20 degrees, though with a pattern speed that decreases with
increasing Galactic radius. Inner bars are lacking however, which appear
required to fully reproduce the central molecular zone.Comment: 16 pages, 15 figures, accepted by MNRA
Acoustic environmental accuracy requirements for response determination
A general purpose computer program was developed for the prediction of vehicle interior noise. This program, named VIN, has both modal and statistical energy analysis capabilities for structural/acoustic interaction analysis. The analytic models and their computer implementation were verified through simple test cases with well-defined experimental results. The model was also applied in a space shuttle payload bay launch acoustics prediction study. The computer program processes large and small problems with equal efficiency because all arrays are dynamically sized by program input variables at run time. A data base is built and easily accessed for design studies. The data base significantly reduces the computational costs of such studies by allowing the reuse of the still-valid calculated parameters of previous iterations
Scalable iterative methods for sampling from massive Gaussian random vectors
Sampling from Gaussian Markov random fields (GMRFs), that is multivariate
Gaussian ran- dom vectors that are parameterised by the inverse of their
covariance matrix, is a fundamental problem in computational statistics. In
this paper, we show how we can exploit arbitrarily accu- rate approximations to
a GMRF to speed up Krylov subspace sampling methods. We also show that these
methods can be used when computing the normalising constant of a large
multivariate Gaussian distribution, which is needed for both any
likelihood-based inference method. The method we derive is also applicable to
other structured Gaussian random vectors and, in particu- lar, we show that
when the precision matrix is a perturbation of a (block) circulant matrix, it
is still possible to derive O(n log n) sampling schemes.Comment: 17 Pages, 4 Figure
Star formation and ISM morphology in tidally induced spiral structures
Tidal encounters are believed to be one of the key drivers of galactic spiral
structure in the Universe. Such spirals are expected to produce different
morphological and kinematic features compared to density wave and dynamic
spiral arms. In this work we present high resolution simulations of a tidal
encounter of a small mass companion with a disc galaxy. Included are the
effects of gas cooling and heating, star formation and stellar feedback. The
structure of the perturbed disc differs greatly from the isolated galaxy,
showing clear spiral features that act as sites of new star formation, and
displaying interarm spurs. The two arms of the galaxy, the bridge and tail,
appear to behave differently; with different star formation histories and
structure. Specific attention is focused on offsets between gas and stellar
spiral features which can be directly compared to observations. We find some
offsets do exist between different media, with gaseous arms appearing mostly on
the convex side of the stellar arms, though the exact locations appear highly
time dependent. These results further highlight the differences between tidal
spirals and other theories of arm structure.Comment: 17 pages, 19 colour figures, accepted for publication in MNRA
- …