Tidal encounters are believed to be one of the key drivers of galactic spiral
structure in the Universe. Such spirals are expected to produce different
morphological and kinematic features compared to density wave and dynamic
spiral arms. In this work we present high resolution simulations of a tidal
encounter of a small mass companion with a disc galaxy. Included are the
effects of gas cooling and heating, star formation and stellar feedback. The
structure of the perturbed disc differs greatly from the isolated galaxy,
showing clear spiral features that act as sites of new star formation, and
displaying interarm spurs. The two arms of the galaxy, the bridge and tail,
appear to behave differently; with different star formation histories and
structure. Specific attention is focused on offsets between gas and stellar
spiral features which can be directly compared to observations. We find some
offsets do exist between different media, with gaseous arms appearing mostly on
the convex side of the stellar arms, though the exact locations appear highly
time dependent. These results further highlight the differences between tidal
spirals and other theories of arm structure.Comment: 17 pages, 19 colour figures, accepted for publication in MNRA