494 research outputs found

    Structural insights into RNA processing by the human RISC-loading complex.

    Get PDF
    Targeted gene silencing by RNA interference (RNAi) requires loading of a short guide RNA (small interfering RNA (siRNA) or microRNA (miRNA)) onto an Argonaute protein to form the functional center of an RNA-induced silencing complex (RISC). In humans, Argonaute2 (AGO2) assembles with the guide RNA-generating enzyme Dicer and the RNA-binding protein TRBP to form a RISC-loading complex (RLC), which is necessary for efficient transfer of nascent siRNAs and miRNAs from Dicer to AGO2. Here, using single-particle EM analysis, we show that human Dicer has an L-shaped structure. The RLC Dicer's N-terminal DExH/D domain, located in a short 'base branch', interacts with TRBP, whereas its C-terminal catalytic domains in the main body are proximal to AGO2. A model generated by docking the available atomic structures of Dicer and Argonaute homologs into the RLC reconstruction suggests a mechanism for siRNA transfer from Dicer to AGO2

    Architecture of Pol II(G) and molecular mechanism of transcription regulation by Gdown1.

    Get PDF
    Tight binding of Gdown1 represses RNA polymerase II (Pol II) function in a manner that is reversed by Mediator, but the structural basis of these processes is unclear. Although Gdown1 is intrinsically disordered, its Pol II interacting domains were localized and shown to occlude transcription factor IIF (TFIIF) and transcription factor IIB (TFIIB) binding by perfect positioning on their Pol II interaction sites. Robust binding of Gdown1 to Pol II is established by cooperative interactions of a strong Pol II binding region and two weaker binding modulatory regions, thus providing a mechanism both for tight Pol II binding and transcription inhibition and for its reversal. In support of a physiological function for Gdown1 in transcription repression, Gdown1 co-localizes with Pol II in transcriptionally silent nuclei of early Drosophila embryos but re-localizes to the cytoplasm during zygotic genome activation. Our study reveals a self-inactivation through Gdown1 binding as a unique mode of repression in Pol II function

    Genetic and Chemical Evaluation of Trypanosoma brucei Oleate Desaturase as a Candidate Drug Target

    Get PDF
    Background: Trypanosomes can synthesize polyunsaturated fatty acids. Previously, we have shown that they possess stearoyl-CoA desaturase (SCD) and oleate desaturase (OD) to convert stearate (C18) into oleate (C18:1) and linoleate (C18:2), respectively. Here we examine if OD is essential to these parasites. Methodology: Cultured procyclic (insect-stage) form (PCF) and bloodstream-form (BSF) Trypanosoma brucei cells were treated with 12- and 13-thiastearic acid (12-TS and 13-TS), inhibitors of OD, and the expression of the enzyme was knocked down by RNA interference. The phenotype of these cells was studied. Principal Findings: Growth of PCF T. brucei was totally inhibited by 100 mM of 12-TS and 13-TS, with EC50 values of 4062 and 3062 mM, respectively. The BSF was more sensitive, with EC50 values of 763 and 261 mM, respectively. This growth phenotype was due to the inhibitory effect of thiastearates on OD and, to a lesser extent, on SCD. The enzyme inhibition caused a drop in total unsaturated fatty-acid level of the cells, with a slight increase in oleate but a drastic decrease in linoleate level, most probably affecting membrane fluidity. After knocking down OD expression in PCF, the linoleate content was notably reduced, whereas that of oleate drastically increased, maintaining the total unsaturated fatty-acid level unchanged. Interestingly, the growth phenotype of the RNAi-induced cells was similar to that found for thiastearate-treated trypanosomes, with the former cells growing twofold slower than the latter ones, indicating that the linoleate content itsel

    Plant-made polio type 3 stabilized VLPs—a candidate synthetic polio vaccine

    Get PDF
    Poliovirus (PV) is the causative agent of poliomyelitis, a crippling human disease known since antiquity. PV occurs in two distinct antigenic forms, D and C, of which only the D form elicits a robust neutralizing response. Developing a synthetically produced stabilized viruslike particle (sVLP)-based vaccine with D antigenicity, without the drawbacks of current vaccines, will be a major step towards the final eradication of poliovirus. Such a sVLP would retain the native antigenic conformation and the repetitive structure of the original virus particle, but lack infectious genomic material. In this study, we report the production of synthetically stabilized PV VLPs in plants. Mice carrying the gene for the human PV receptor are protected from wild-type PV when immunized with the plant-made PV sVLPs. Structural analysis of the stabilized mutant at 3.6 Ã… resolution by cryo-electron microscopy and single particle reconstruction reveals a structure almost indistinguishable from wild-type PV3

    Reliable identification of protein-protein interactions by crosslinking mass spectrometry

    Get PDF
    Protein-protein interactions govern most cellular pathways and processes, and multiple technologies have emerged to systematically map them. Assessing the error of interaction networks has been a challenge. Crosslinking mass spectrometry is currently widening its scope from structural analyses of purified multi-protein complexes towards systems-wide analyses of protein-protein interactions (PPIs). Using a carefully controlled large-scale analysis of Escherichia coli cell lysate, we demonstrate that false-discovery rates (FDR) for PPIs identified by crosslinking mass spectrometry can be reliably estimated. We present an interaction network comprising 590 PPIs at 1% decoy-based PPI-FDR. The structural information included in this network localises the binding site of the hitherto uncharacterised protein YacL to near the DNA exit tunnel on the RNA polymerase.TU Berlin, Open-Access-Mittel – 2021DFG, 390540038, EXC 2008: Unifying Systems in Catalysis "UniSysCat"DFG, 392923329, GRK 2473: Bioaktive Peptide - Innovative Aspekte zur Synthese und BiosyntheseDFG, 426290502, Erfassung der strukturellen Organisation des Mycoplasma pneumoniae Proteoms mittels in-Zell Crosslinking-Massenspektrometri

    Mechanism of effector capture and delivery by the type IV secretion system from Legionella pneumophila

    Get PDF
    Legionella pneumophila is a bacterial pathogen that utilises a Type IV secretion (T4S) system to inject effector proteins into human macrophages. Essential to the recruitment and delivery of effectors to the T4S machinery is the membrane-embedded T4 coupling complex (T4CC). Here, we purify an intact T4CC from the Legionella membrane. It contains the DotL ATPase, the DotM and DotN proteins, the chaperone module IcmSW, and two previously uncharacterised proteins, DotY and DotZ. The atomic resolution structure reveals a DotLMNYZ hetero-pentameric core from which the flexible IcmSW module protrudes. Six of these hetero-pentameric complexes may assemble into a 1.6-MDa hexameric nanomachine, forming an inner membrane channel for effectors to pass through. Analysis of multiple cryo EM maps, further modelling and mutagenesis provide working models for the mechanism for binding and delivery of two essential classes of Legionella effectors, depending on IcmSW or DotM, respectively

    Mechanism of eIF6 release from the nascent 60S ribosomal subunit.

    Get PDF
    SBDS protein (deficient in the inherited leukemia-predisposition disorder Shwachman-Diamond syndrome) and the GTPase EFL1 (an EF-G homolog) activate nascent 60S ribosomal subunits for translation by catalyzing eviction of the antiassociation factor eIF6 from nascent 60S ribosomal subunits. However, the mechanism is completely unknown. Here, we present cryo-EM structures of human SBDS and SBDS-EFL1 bound to Dictyostelium discoideum 60S ribosomal subunits with and without endogenous eIF6. SBDS assesses the integrity of the peptidyl (P) site, bridging uL16 (mutated in T-cell acute lymphoblastic leukemia) with uL11 at the P-stalk base and the sarcin-ricin loop. Upon EFL1 binding, SBDS is repositioned around helix 69, thus facilitating a conformational switch in EFL1 that displaces eIF6 by competing for an overlapping binding site on the 60S ribosomal subunit. Our data reveal the conserved mechanism of eIF6 release, which is corrupted in both inherited and sporadic leukemias.Supported by a Federation of European Biochemical Societies Long term Fellowship (to FW), Specialist Programme from Bloodwise [12048] (AJW), the Medical Research Council [MC_U105161083] (AJW) and [U105115237] (RRK), Wellcome Trust strategic award to the Cambridge Institute for Medal Research [100140], Tesni Parry Trust (AJW), Ted’s Gang (AJW) and the Cambridge NIHR Biomedical Research Centre.This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/nsmb.311

    An internal ribosome entry site in the 5′ untranslated region of epidermal growth factor receptor allows hypoxic expression

    Get PDF
    The expression of epidermal growth factor receptor (EGFR/ERBB1/HER1) is implicated in the progress of numerous cancers, a feature that has been exploited in the development of EGFR antibodies and EGFR tyrosine kinase inhibitors as anti-cancer drugs. However, EGFR also has important normal cellular functions, leading to serious side effects when EGFR is inhibited. One damaging characteristic of many oncogenes is the ability to be expressed in the hypoxic conditions associated with the tumour interior. It has previously been demonstrated that expression of EGFR is maintained in hypoxic conditions via an unknown mechanism of translational control, despite global translation rates generally being attenuated under hypoxic conditions. In this report, we demonstrate that the human EGFR 5′ untranslated region (UTR) sequence can initiate the expression of a downstream open reading frame via an internal ribosome entry site (IRES). We show that this effect is not due to either cryptic promoter activity or splicing events. We have investigated the requirement of the EGFR IRES for eukaryotic initiation factor 4A (eIF4A), which is an RNA helicase responsible for processing RNA secondary structure as part of translation initiation. Treatment with hippuristanol (a potent inhibitor of eIF4A) caused a decrease in EGFR 5′ UTR-driven reporter activity and also a reduction in EGFR protein level. Importantly, we show that expression of a reporter gene under the control of the EGFR IRES is maintained under hypoxic conditions despite a fall in global translation rates

    Structural basis of signal sequence surveillance and selection by the SRP–FtsY complex

    Get PDF
    Signal-recognition particle (SRP)-dependent targeting of translating ribosomes to membranes is a multistep quality-control process. Ribosomes that are translating weakly hydrophobic signal sequences can be rejected from the targeting reaction even after they are bound to the SRP. Here we show that the early complex, formed by Escherichia coli SRP and its receptor FtsY with ribosomes translating the incorrect cargo EspP, is unstable and rearranges inefficiently into subsequent conformational states, such that FtsY dissociation is favored over successful targeting. The N-terminal extension of EspP is responsible for these defects in the early targeting complex. The cryo-electron microscopy structure of this 'false' early complex with EspP revealed an ordered M domain of SRP protein Ffh making two ribosomal contacts, and the NG domains of Ffh and FtsY forming a distorted, flexible heterodimer. Our results provide a structural basis for SRP-mediated signal-sequence selection during recruitment of the SRP receptor

    Molecular basis of caspase-1 polymerization and its inhibition by a new capping mechanism

    Get PDF
    Inflammasomes are cytosolic caspase-1-activation complexes that sense intrinsic and extrinsic danger signals, and trigger inflammatory responses and pyroptotic cell death. Homotypic interactions among Pyrin domains and caspase recruitment domains (CARDs) in inflammasome-complex components mediate oligomerization into filamentous assemblies. Several cytosolic proteins consisting of only interaction domains exert inhibitory effects on inflammasome assembly. In this study, we determined the structure of the human caspase-1 CARD domain (caspase-1[superscript CARD]) filament by cryo-electron microscopy and investigated the biophysical properties of two caspase-1-like CARD-only proteins: human inhibitor of CARD (INCA or CARD17) and ICEBERG (CARD18). Our results reveal that INCA caps caspase-1 filaments, thereby exerting potent inhibition with low-nanomolar K[subscript i] on caspase-1[superscript CARD] polymerization in vitro and inflammasome activation in cells. Whereas caspase-1[superscript CARD] uses six complementary surfaces of three types for filament assembly, INCA is defective in two of the six interfaces and thus terminates the caspase-1 filament
    • …
    corecore