208 research outputs found

    Structural, photocatalytic and electroconductive properties of bismuth-substituted CaMoO4

    Get PDF
    The Ca1−3xBi2xФxMoO4 system (0.025 ​≤ ​x ​≤ ​0.30, where Ф represents cation vacancies) was synthesized and studied. The 0.025 ​= ​x ​≤ ​0.15 compositions show a tetragonal defect scheelite structure. Powder X-ray and neutron diffraction patterns for compositions with 0.15 ​< ​x ​≤ ​0.225 exhibit a tetragonal supercell with asup ​≈ ​√5a, csup ​≈ ​c where a and c are the tetragonal scheelite cell parameters. Transmission electron microscopy shows that Ca0.4Bi0.4MoO4, crystals consist of three crystallographic domains: (1) defect scheelite; (2) tetragonal superlattice and (3) incommensurately modulated. Photocatalytic properties were studied using Rhodamine B water solutions under UV light. Catalytic activity increases with increasing Bi content. The conductivity of 0.15 ​< ​x ​≤ ​0.225 compositions is 10−7 to 10−8 ​S ​cm−1 in the range 500–650 ​°C, while compositions in the range 0.025 ​= ​x ​≤ ​0.15 show conductivity values from 10−3 to 10−8 ​S ​cm−1 from 500 to 800 ​°C. © 2020 Elsevier Inc.The study was done with a support of RSF, projects № 20-73-10048. The travel grant for neutron diffraction work was given by Act 211 Government of the Russian Federation, contract № 02.A03.21.0006. The authors are grateful to the Science and Technology Facilities Council STFC for neutron beam time at the ISIS facility, Rutherford Appleton Laboratory, award No. RB1910306. Dr Ron Smith at ISIS is thanked for his help in neutron data collection

    Cytosine deaminase base editing to restore COL7A1 in dystrophic epidermolysis bullosa human:murine skin model

    Get PDF
    Recessive dystrophic epidermolysis bullosa (RDEB) is a debilitating blistering skin disorder caused by loss-of-function mutations in COL7A1 encoding type VII collagen (C7), the main component of anchoring fibrils (AFs) at the dermal-epidermal junction (DEJ). Although conventional gene therapy approaches through viral vectors have been tested in pre-clinical and clinical trials, they are limited by transgene size constraints and only support unregulated gene expression. Genome editing could potentially overcome some of these limitations, and CRISPR/Cas9 has already been applied in research studies to restore COL7A1 expression. Delivery of suitable repair templates for repair of DNA cleaved by Cas9 is still major challenge, and alternative base editing strategies may offer corrective solutions for certain mutations. We demonstrate highly targeted and efficient cytidine deamination and molecular correction of a defined RDEB mutation (c.425A>G) leading to restoration of full-length C7 protein expression in primary human fibroblasts and iPSCs. C7 basement membrane expression and skin architecture were restored with de novo AFs identified by electron microscopy in base edited human RDEB grafts recovered from immunodeficient mice. The results demonstrate the potential and promise of emerging base editing technologies in tackling inherited disorders with well-defined single nucleotide mutations

    Protoplasmic Astrocytes Enhance the Ability of Neural Stem Cells to Differentiate into Neurons In Vitro

    Get PDF
    Protoplasmic astrocytes have been reported to exhibit neuroprotective effects on neurons, but there has been no direct evidence for a functional relationship between protoplasmic astrocytes and neural stem cells (NSCs). In this study, we examined neuronal differentiation of NSCs induced by protoplasmic astrocytes in a co-culture model. Protoplasmic astrocytes were isolated from new-born and NSCs from the E13-15 cortex of rats respectively. The differentiated cells labeled with neuron-specific marker β-tubulin III, were dramatically increased at 7 days in the co-culture condition. Blocking the effects of brain-derived neurotrophic factor (BDNF) with an anti-BDNF antibody reduced the number of neurons differentiated from NSCs when co-cultured with protoplasmic astrocytes. In fact, the content of BDNF in the supernatant obtained from protoplasmic astrocytes and NSCs co-culture media was significantly greater than that from control media conditions. These results indicate that protoplasmic astrocytes promote neuronal differentiation of NSCs, which is driven, at least in part, by BDNF

    L1pred: A Sequence-Based Prediction Tool for Catalytic Residues in Enzymes with the L1-logreg Classifier

    Get PDF
    To understand enzyme functions, identifying the catalytic residues is a usual first step. Moreover, knowledge about catalytic residues is also useful for protein engineering and drug-design. However, to experimentally identify catalytic residues remains challenging for reasons of time and cost. Therefore, computational methods have been explored to predict catalytic residues. Here, we developed a new algorithm, L1pred, for catalytic residue prediction, by using the L1-logreg classifier to integrate eight sequence-based scoring functions. We tested L1pred and compared it against several existing sequence-based methods on carefully designed datasets Data604 and Data63. With ten-fold cross-validation, L1pred showed the area under precision-recall curve (AUPR) and the area under ROC curve (AUC) of 0.2198 and 0.9494 on the training dataset, Data604, respectively. In addition, on the independent test dataset, Data63, it showed the AUPR and AUC values of 0.2636 and 0.9375, respectively. Compared with other sequence-based methods, L1pred showed the best performance on both datasets. We also analyzed the importance of each attribute in the algorithm, and found that all the scores contributed more or less equally to the L1pred performance

    Oxidative stress causes ERK phosphorylation and cell death in cultured retinal pigment epithelium: Prevention of cell death by AG126 and 15-deoxy-delta 12, 14-PGJ(2)

    Get PDF
    BACKGROUND: The retina, which is exposed to both sunlight and very high levels of oxygen, is exceptionally rich in polyunsaturated fatty acids, which makes it a favorable environment for the generation of reactive oxygen species. The cytotoxic effects of hydrogen peroxide (H(2)O(2)) induced oxidative stress on retinal pigment epithelium were characterized in this study. METHODS: The MTT cell viability assay, Texas-Red phalloidin staining, immunohistochemistry and Western blot analysis were used to assess the effects of oxidative stress on primary human retinal pigment epithelial cell cultures and the ARPE-19 cell line. RESULTS: The treatment of retinal pigment epithelial cells with H(2)O(2 )caused a dose-dependent decrease of cellular viability, which was preceded by a significant cytoskeletal rearrangement, activation of the Extracellular signal-Regulated Kinase, lipid peroxidation and nuclear condensation. This cell death was prevented partially by the prostaglandin derivative, 15d-PGJ(2 )and by the protein kinase inhibitor, AG126. CONCLUSION: 15d-PGJ(2 )and AG126 may be useful pharmacological tools in the future capable of preventing oxidative stress induced RPE cell death in human ocular diseases

    Kaposin-B Enhances the PROX1 mRNA Stability during Lymphatic Reprogramming of Vascular Endothelial Cells by Kaposi's Sarcoma Herpes Virus

    Get PDF
    Kaposi's sarcoma (KS) is the most common cancer among HIV-positive patients. Histogenetic origin of KS has long been elusive due to a mixed expression of both blood and lymphatic endothelial markers in KS tumor cells. However, we and others discovered that Kaposi's sarcoma herpes virus (KSHV) induces lymphatic reprogramming of blood vascular endothelial cells by upregulating PROX1, which functions as the master regulator for lymphatic endothelial differentiation. Here, we demonstrate that the KSHV latent gene kaposin-B enhances the PROX1 mRNA stability and plays an important role in KSHV-mediated PROX1 upregulation. We found that PROX1 mRNA contains a canonical AU-rich element (ARE) in its 3′-untranslated region that promotes PROX1 mRNA turnover and that kaposin-B stimulates cytoplasmic accumulation of the ARE-binding protein HuR through activation of the p38/MK2 pathway. Moreover, HuR binds to and stabilizes PROX1 mRNA through its ARE and is necessary for KSHV-mediated PROX1 mRNA stabilization. Together, our study demonstrates that kaposin-B plays a key role in PROX1 upregulation during lymphatic reprogramming of blood vascular endothelial cells by KSHV

    Improved siRNA/shRNA Functionality by Mismatched Duplex

    Get PDF
    siRNA (small interfering RNA) and shRNA (small hairpin RNA) are powerful and commonly used tools in biomedical research. Currently, siRNAs are generally designed as two 21 nt strands of RNA that include a 19 nt completely complementary part and a 2 nt overhang. However, since the si/shRNAs use the endogenous miRNA machinery for gene silencing and the miRNAs are generally 22 nt in length and contain multiple internal mismatches, we tested if the functionality can be increased by designing the si/shRNAs to mimic a miRNA structure. We systematically investigated the effect of single or multiple mismatches introduced in the passenger strand at different positions on siRNA functionality. Mismatches at certain positions could significantly increase the functionality of siRNAs and also, in some cases decreased the unwanted passenger strand functionality. The same strategy could also be used to design shRNAs. Finally, we showed that both si and miRNA structured oligos (siRNA with or without mismatches in the passenger strand) can repress targets in all individual Ago containing cells, suggesting that the Ago proteins do not differentiate between si/miRNA-based structure for silencing activity

    Genome-Wide Transcriptome Analyses of Silicon Metabolism in Phaeodactylum tricornutum Reveal the Multilevel Regulation of Silicic Acid Transporters

    Get PDF
    BACKGROUND:Diatoms are largely responsible for production of biogenic silica in the global ocean. However, in surface seawater, Si(OH)(4) can be a major limiting factor for diatom productivity. Analyzing at the global scale the genes networks involved in Si transport and metabolism is critical in order to elucidate Si biomineralization, and to understand diatoms contribution to biogeochemical cycles. METHODOLOGY/PRINCIPAL FINDINGS:Using whole genome expression analyses we evaluated the transcriptional response to Si availability for the model species Phaeodactylum tricornutum. Among the differentially regulated genes we found genes involved in glutamine-nitrogen pathways, encoding putative extracellular matrix components, or involved in iron regulation. Some of these compounds may be good candidates for intracellular intermediates involved in silicic acid storage and/or intracellular transport, which are very important processes that remain mysterious in diatoms. Expression analyses and localization studies gave the first picture of the spatial distribution of a silicic acid transporter in a diatom model species, and support the existence of transcriptional and post-transcriptional regulations. CONCLUSIONS/SIGNIFICANCE:Our global analyses revealed that about one fourth of the differentially expressed genes are organized in clusters, underlying a possible evolution of P. tricornutum genome, and perhaps other pennate diatoms, toward a better optimization of its response to variable environmental stimuli. High fitness and adaptation of diatoms to various Si levels in marine environments might arise in part by global regulations from gene (expression level) to genomic (organization in clusters, dosage compensation by gene duplication), and by post-transcriptional regulation and spatial distribution of SIT proteins

    Genome-Wide Functional Profiling Identifies Genes and Processes Important for Zinc-Limited Growth of Saccharomyces cerevisiae

    Get PDF
    Zinc is an essential nutrient because it is a required cofactor for many enzymes and transcription factors. To discover genes and processes in yeast that are required for growth when zinc is limiting, we used genome-wide functional profiling. Mixed pools of ∼4,600 deletion mutants were inoculated into zinc-replete and zinc-limiting media. These cells were grown for several generations, and the prevalence of each mutant in the pool was then determined by microarray analysis. As a result, we identified more than 400 different genes required for optimal growth under zinc-limiting conditions. Among these were several targets of the Zap1 zinc-responsive transcription factor. Their importance is consistent with their up-regulation by Zap1 in low zinc. We also identified genes that implicate Zap1-independent processes as important. These include endoplasmic reticulum function, oxidative stress resistance, vesicular trafficking, peroxisome biogenesis, and chromatin modification. Our studies also indicated the critical role of macroautophagy in low zinc growth. Finally, as a result of our analysis, we discovered a previously unknown role for the ICE2 gene in maintaining ER zinc homeostasis. Thus, functional profiling has provided many new insights into genes and processes that are needed for cells to thrive under the stress of zinc deficiency

    Accurate Prediction of Secreted Substrates and Identification of a Conserved Putative Secretion Signal for Type III Secretion Systems

    Get PDF
    The type III secretion system is an essential component for virulence in many Gram-negative bacteria. Though components of the secretion system apparatus are conserved, its substrates—effector proteins—are not. We have used a novel computational approach to confidently identify new secreted effectors by integrating protein sequence-based features, including evolutionary measures such as the pattern of homologs in a range of other organisms, G+C content, amino acid composition, and the N-terminal 30 residues of the protein sequence. The method was trained on known effectors from the plant pathogen Pseudomonas syringae and validated on a set of effectors from the animal pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium) after eliminating effectors with detectable sequence similarity. We show that this approach can predict known secreted effectors with high specificity and sensitivity. Furthermore, by considering a large set of effectors from multiple organisms, we computationally identify a common putative secretion signal in the N-terminal 20 residues of secreted effectors. This signal can be used to discriminate 46 out of 68 total known effectors from both organisms, suggesting that it is a real, shared signal applicable to many type III secreted effectors. We use the method to make novel predictions of secreted effectors in S. Typhimurium, some of which have been experimentally validated. We also apply the method to predict secreted effectors in the genetically intractable human pathogen Chlamydia trachomatis, identifying the majority of known secreted proteins in addition to providing a number of novel predictions. This approach provides a new way to identify secreted effectors in a broad range of pathogenic bacteria for further experimental characterization and provides insight into the nature of the type III secretion signal
    corecore