858 research outputs found

    Unveiling Su Aurigae in the near Infrared: New high spatial resolution results using Adaptive Optics

    Full text link
    We present here new results on circumstellar nebulosity around SU Aurigae, a T-Tauri star of about 2 solar mass and 5 Myrs old at 152 pc in the J, H and K bands using high resolution adaptive optics imaging (0\farcs30) with the Penn state IR Imaging Spectrograph (PIRIS) at the 100 inch Mt. Wilson telescope. A comparison with HST STIS optical (0.2 to 1.1 micron) images shows that the orientation of the circumstellar nebulosity in the near-IR extends from PAs 210 to 270 degrees in H and K bands and up to 300 degrees in the J band. We call the circumstellar nebulosity seen between 210 to 270 degrees as 'IR nebulosity'. We find that the IR nebulosity (which extends up to 3.5 arcsecs in J band and 2.5 arcsecs in the K band) is due to scattered light from the central star. The IR nebulosity is either a cavity formed by the stellar outflows or part of the circumstellar disk. We present a schematic 3-dimensional geometrical model of the disk and jet of SU Aur based on STIS and our near-IR observations. According to this model the IR nebulosity is a part of the circumstellar disk seen at high inclination angles. The extension of the IR nebulosity is consistent with estimates of the disk diameter of 50 to 400 AU in radius, from earlier mm, K band interferometric observations and SED fittings.Comment: Accepted for publications in the Astronomical Journal, to appear in the May issue of the Journa

    Non-local effects in the mean-field disc dynamo. II. Numerical and asymptotic solutions

    Full text link
    The thin-disc global asymptotics are discussed for axisymmetric mean-field dynamos with vacuum boundary conditions allowing for non-local terms arising from a finite radial component of the mean magnetic field at the disc surface. This leads to an integro-differential operator in the equation for the radial distribution of the mean magnetic field strength, Q(r)Q(r) in the disc plane at a distance rr from its centre; an asymptotic form of its solution at large distances from the dynamo active region is obtained. Numerical solutions of the integro-differential equation confirm that the non-local effects act similarly to an enhanced magnetic diffusion. This leads to a wider radial distribution of the eigensolution and faster propagation of magnetic fronts, compared to solutions with the radial surface field neglected. Another result of non-local effects is a slowly decaying algebraic tail of the eigenfunctions outside the dynamo active region, Q(r)∼r−4Q(r)\sim r^{-4}, which is shown to persist in nonlinear solutions where α\alpha-quenching is included. The non-local nature of the solutions can affect the radial profile of the regular magnetic field in spiral galaxies and accretion discs at large distances from the centre.Comment: Revised version, as accepted; Geophys. Astrophys. Fluid Dyna

    Semiconductor saturable absorber mirror mode-locked Yb:YAP laser

    Get PDF
    We report on sub-30 fs pulse generation from a semiconductor saturable absorber mirror mode-locked Yb:YAP laser. Pumping by a spatially single-mode Yb fiber laser at 979 nm, soliton pulses as short as 29 fs were generated at 1091 nm with an average output power of 156 mW and a pulse repetition rate of 85.1 MHz. The maximum output power of the mode-locked Yb:YAP laser amounted to 320 mW for slightly longer pulses (32 fs) at an incident pump power of 1.52 W, corresponding to a peak power of 103 kW and an optical efficiency of 20.5%. To the best of our knowledge, this result represents the shortest pulses ever achieved from any solid-state Yb laser mode-locked by a slow, i.e., physical saturable absorber

    Entropy Bound and Causality Violation in Higher Curvature Gravity

    Full text link
    In any quantum theory of gravity we do expect corrections to Einstein gravity to occur. Yet, at fundamental level, it is not apparent what the most relevant corrections are. We argue that the generic curvature square corrections present in lower dimensional actions of various compactified string theories provide a natural passage between the classical and quantum realms of gravity. The Gauss-Bonnet and (Riemann)2({\rm Riemann})^2 gravities, in particular, provide concrete examples in which inconsistency of a theory, such as, a violation of microcausality, and a classical limit on black hole entropy are correlated. In such theories the ratio of the shear viscosity to the entropy density, η/s\eta/s, can be smaller than for a boundary conformal field theory with Einstein gravity dual. This result is interesting from the viewpoint that the nuclear matter or quark-gluon plasma produced (such as at RHIC) under extreme densities and temperatures may violate the conjectured bound η/s≥1/4π\eta/s\ge 1/4\pi, {\it albeit} marginally so.Comment: 23 pages, several eps figures; minor changes, references added, published versio

    Brownian Carnot engine

    Get PDF
    The Carnot cycle imposes a fundamental upper limit to the efficiency of a macroscopic motor operating between two thermal baths. However, this bound needs to be reinterpreted at microscopic scales, where molecular bio-motors and some artificial micro-engines operate. As described by stochastic thermodynamics, energy transfers in microscopic systems are random and thermal fluctuations induce transient decreases of entropy, allowing for possible violations of the Carnot limit. Despite its potential relevance for the development of a thermodynamics of small systems, an experimental study of microscopic Carnot engines is still lacking. Here we report on an experimental realization of a Carnot engine with a single optically trapped Brownian particle as working substance. We present an exhaustive study of the energetics of the engine and analyze the fluctuations of the finite-time efficiency, showing that the Carnot bound can be surpassed for a small number of non-equilibrium cycles. As its macroscopic counterpart, the energetics of our Carnot device exhibits basic properties that one would expect to observe in any microscopic energy transducer operating with baths at different temperatures. Our results characterize the sources of irreversibility in the engine and the statistical properties of the efficiency -an insight that could inspire novel strategies in the design of efficient nano-motors.Comment: 7 pages, 7 figure

    Recombination Drives Vertebrate Genome Contraction

    Get PDF
    Selective and/or neutral processes may govern variation in DNA content and, ultimately, genome size. The observation in several organisms of a negative correlation between recombination rate and intron size could be compatible with a neutral model in which recombination is mutagenic for length changes. We used whole-genome data on small insertions and deletions within transposable elements from chicken and zebra finch to demonstrate clear links between recombination rate and a number of attributes of reduced DNA content. Recombination rate was negatively correlated with the length of introns, transposable elements, and intergenic spacer and with the rate of short insertions. Importantly, it was positively correlated with gene density, the rate of short deletions, the deletion bias, and the net change in sequence length. All these observations point at a pattern of more condensed genome structure in regions of high recombination. Based on the observed rates of small insertions and deletions and assuming that these rates are representative for the whole genome, we estimate that the genome of the most recent common ancestor of birds and lizards has lost nearly 20% of its DNA content up until the present. Expansion of transposable elements can counteract the effect of deletions in an equilibrium mutation model; however, since the activity of transposable elements has been low in the avian lineage, the deletion bias is likely to have had a significant effect on genome size evolution in dinosaurs and birds, contributing to the maintenance of a small genome. We also demonstrate that most of the observed correlations between recombination rate and genome contraction parameters are seen in the human genome, including for segregating indel polymorphisms. Our data are compatible with a neutral model in which recombination drives vertebrate genome size evolution and gives no direct support for a role of natural selection in this process

    Interactions between Surround Suppression and Interocular Suppression in Human Vision

    Get PDF
    Several types of suppression phenomena have been observed in the visual system. For example, the ability to detect a target stimulus is often impaired when the target is embedded in a high-contrast surround. This contextual modulation, known as surround suppression, was formerly thought to occur only in the periphery. Another type of suppression phenomena is interocular suppression, in which the sensitivity to a monocular target is reduced by a superimposed mask in the opposite eye. Here, we explored how the two types of suppression operating across different spatial regions interact with one another when they simultaneously exert suppressive influences on a common target presented at the fovea. In our experiments, a circular target grating presented to the fovea of one eye was suppressed interocularly by a noise pattern of the same size in the other eye. The foveal stimuli were either shown alone or surrounded by a monocular annular grating. The orientation and eye-of-origin of the surround grating were varied. We found that the detection of the foveal target subjected to interocular suppression was severely impaired by the addition of the surround grating, indicating strong surround suppression in the fovea. In contrast, when the interocular suppression was released by superimposing a binocular fusion ring onto both the target and the dichoptic mask, the surround suppression effect was found to be dramatically decreased. In addition, the surround suppression was found to depend on the contrast of the dichoptic noise with the greatest surround suppression effect being obtained only when the noise contrast was at an intermediate level. These findings indicate that surround suppression and interocular suppression are not independent of each other, but there are strong interactions between them. Moreover, our results suggest that strong surround suppression may also occur at the fovea and not just the periphery

    Solvothermal Synthesis of Ternary Sulfides of Sb2 − xBixS3(x = 0.4, 1) with 3D Flower-Like Architectures

    Get PDF
    Flower-like nanostructures of Sb2 − xBixS3(x = 0.4, 1.0) were successfully prepared using both antimony diethyldithiocarbamate [Sb(DDTC)3] and bismuth diethyldithiocarbamate [Bi(DDTC)3] as precursors under solvothermal conditions at 180 °C. The prepared Sb2 − xBixS3 with flower-like 3D architectures were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDS), high-resolution transmission electron microscopy (HRTEM), and selected area electron diffraction (SAED). The flower-like architectures, with an average diameter of ~4 μm, were composed of single-crystalline nanorods with orthorhombic structures. The optical absorption properties of the Sb2 − xBixS3 nanostructures were investigated by UV–Visible spectroscopy, and the results indicate that the Sb2 − xBixS3 compounds are semiconducting with direct band gaps of 1.32 and 1.30 eV for x = 0.4 and 1.0, respectively. On the basis of the experimental results, a possible growth mechanism for the flower-like Sb2 − xBixS3 nanostructures is suggested

    Retrograde Interference in Perceptual Learning of a Peripheral Hyperacuity Task

    Get PDF
    Consolidation, a process that stabilizes memory trace after initial acquisition, has been studied for over a century. A number of studies have shown that a skill or memory must be consolidated after acquisition so that it becomes resistant to interference from new information. Previous research found that training on a peripheral 3-dot hyperacuity task could retrogradely interfere with earlier training on the same task but with a mirrored stimulus configuration. However, a recent study failed to replicate this finding. Here we address the controversy by replicating both patterns of results, however, under different experimental settings. We find that retrograde interference occurs when eye-movements are tightly controlled, using a gaze-contingent display, where the peripheral stimuli were only presented when subjects maintained fixation. On the other hand, no retrograde interference was found in a group of subjects who performed the task without this fixation control. Our results provide a plausible explanation of why divergent results were found for retrograde interference in perceptual learning on the 3-dot hyperacuity task and confirm that retrograde interference can occur in this type of low-level perceptual learning. Furthermore, our results demonstrate the importance of eye-movement controls in studies of perceptual learning in the peripheral visual field

    The Evolution of Compact Binary Star Systems

    Get PDF
    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs) within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA). Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars -- compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure
    • …
    corecore