1,249 research outputs found

    The study of the extended Higgs boson sector within 2HDM model

    Get PDF
    Consideration of the latest experimental data on the searches for extended sector of Higgs bosons produced at the LHC at a center-of-mass energy of 13 TeV, allows for computer modeling of the properties of supersymmetric particles within 2HDM model. The experimental restrictions on model parameters accounted in FeynHiggs code that is implemented in SusHi program, gave us the possibility to calculate the cross sections and branching fractions for three mechanisms of production and decay of Higgs bosons: 1) ppHττ\rightarrow H\rightarrow\tau\tau, 2) ppAZhllbb\rightarrow A\rightarrow Zh\rightarrow llbb, 3) ppHhhbbττ\rightarrow H\rightarrow hh\rightarrow bb\tau\tau at a center-of-mass energy of 14 TeV. The considered computer modelling make it possible to draw conclusions about the need to take into account the b-associated production process of Higgs bosons for fermionic decay channel at large values of tanβ\beta. Differential cross sections with respect to the Higgs transverse momentum ptp_t and pseudorapidity η\eta are calculated and the peculiarities of the kinematics of the Higgs boson decay products are recognized.Comment: 18 pages, 14 figures, presented at XV Conference of High energy physics, Kharkov, 21-24 March, 201

    Transformation of commercial banks’ functioning standards in globalization context

    Get PDF

    The Two-Screen Measurement Setup to Indirectly Measure Proton Beam Self-Modulation in AWAKE

    Full text link
    The goal of the first phase of the AWAKE \cite{AWAKE1,AWAKE2} experiment at CERN is to measure the self-modulation \cite{SMI} of the σz=12cm\sigma_z = 12\,\rm{cm} long SPS proton bunch into microbunches after traversing 10m10\,\rm{m} of plasma with a plasma density of npe=7×1014electrons/cm3n_{pe}=7\times10^{14}\,\rm{electrons/cm}^3. The two screen measurement setup \cite{Turner2016} is a proton beam diagnostic that can indirectly prove the successful development of the self-modulation of the proton beam by imaging protons that got defocused by the transverse plasma wakefields after passing through the plasma, at two locations downstream the end of the plasma. This article describes the design and realization of the two screen measurement setup integrated in the AWAKE experiment. We discuss the performance and background response of the system based on measurements performed with an unmodulated Gaussian SPS proton bunch during the AWAKE beam commissioning in September and October 2016. We show that the system is fully commissioned and adapted to eventually image the full profile of a self-modulated SPS proton bunch in a single shot measurement during the first phase of the AWAKE experiment.Comment: 5 pages 8 figure

    Field-Driven Transitions in the Dipolar Pyrochlore Antiferromagnet Gd2_2Ti2_2O7_7

    Full text link
    We present a mean-field theory for magnetic field driven transitions in dipolar coupled gadolinium titanate Gd2_2Ti2_2O7_7 pyrochlore system. Low temperature neutron scattering yields a phase that can be regarded as a 8 sublattice antiferromagnet, in which long-ranged ordered moments and fluctuating moments coexist. Our theory gives parameter regions where such a phase is realized, and predicts several other phases, with transitions amongst them driven by magnetic field as well as temperature. We find several instances of {\em local} disorder parameters describing the transitions.Comment: 4 pages, 5 figures. v2: longer version with 2 add.fig., to appear in PR

    Indirect Self-Modulation Instability Measurement Concept for the AWAKE Proton Beam

    Get PDF
    AWAKE, the Advanced Proton-Driven Plasma Wakefield Acceleration Experiment, is a proof-of-principle R&D experiment at CERN using a 400 GeV/c proton beam from the CERN SPS (longitudinal beam size sigma_z = 12 cm) which will be sent into a 10 m long plasma section with a nominal density of approx. 7x10^14 atoms/cm3 (plasma wavelength lambda_p = 1.2mm). In this paper we show that by measuring the time integrated transverse profile of the proton bunch at two locations downstream of the AWAKE plasma, information about the occurrence of the self-modulation instability (SMI) can be inferred. In particular we show that measuring defocused protons with an angle of 1 mrad corresponds to having electric fields in the order of GV/m and fully developed self-modulation of the proton bunch. Additionally, by measuring the defocused beam edge of the self-modulated bunch, information about the growth rate of the instability can be extracted. If hosing instability occurs, it could be detected by measuring a non-uniform defocused beam shape with changing radius. Using a 1 mm thick Chromox scintillation screen for imaging of the self-modulated proton bunch, an edge resolution of 0.6 mm and hence a SMI saturation point resolution of 1.2 m can be achieved.Comment: 4 pages, 4 figures, EAAC conference proceeding

    Transformation of commercial banks’ functioning standards in globalization context

    Get PDF

    Extreme 13C depletion of CCl2F2 in firn air samples from NEEM, Greenland

    Get PDF
    A series of 12 high volume air samples collected from the S2 firn core during the North Greenland Eemian Ice Drilling (NEEM) 2009 campaign have been measured for mixing ratio and stable carbon isotope composition of the chlorofluorocarbon CFC-12 (CCl2F2). While the mixing ratio measurements compare favorably to other firn air studies, the isotope results show extreme 13C depletion at the deepest measurable depth (65 m), to values lower than d13C = -80‰ vs. VPDB (the international stable carbon isotope scale), compared to present day surface tropospheric measurements near -40‰. Firn air modeling was used to interpret these measurements. Reconstructed atmospheric time series indicate even larger depletions (to -120‰) near 1950 AD, with subsequent rapid enrichment of the atmospheric reservoir of the compound to the present day value. Mass-balance calculations show that this change is likely to have been caused by a large change in the isotopic composition of anthropogenic CFC-12 emissions, probably due to technological advances in the CFC production process over the last 80 yr, though direct evidence is lacking

    Vibration resistance, vibration testing, vibration monitoring and diagnostics of gyroscopes and other rotary systems

    Get PDF
    This article is devoted to the presentation in a historical development of the results achieved, founded by M.A. Pavlovsky scientific directions related to the study of vibration processes in rotary systemsДана стаття присвячена викладенню в історичному розвитку досягнутих результатів, започаткованих М.А.Павловським наукового напряму, пов’язаного з вивченням коливальних процесів в обертових системах
    corecore