We present a mean-field theory for magnetic field driven transitions in
dipolar coupled gadolinium titanate Gd2Ti2O7 pyrochlore system. Low
temperature neutron scattering yields a phase that can be regarded as a 8
sublattice antiferromagnet, in which long-ranged ordered moments and
fluctuating moments coexist. Our theory gives parameter regions where such a
phase is realized, and predicts several other phases, with transitions amongst
them driven by magnetic field as well as temperature. We find several instances
of {\em local} disorder parameters describing the transitions.Comment: 4 pages, 5 figures. v2: longer version with 2 add.fig., to appear in
PR