2,016 research outputs found

    The microbiological quality of air improves when using air conditioning systems in cars

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Because of better comfort, air conditioning systems are a common feature in automobiles these days. However, its impact on the number of particles and microorganisms inside the vehicle - and by this its impact on the risk of an allergic reaction - is yet unknown.</p> <p>Methods</p> <p>Over a time period of 30 months, the quality of air was investigated in three different types of cars (VW Passat, VW Polo FSI, Seat Alhambra) that were all equipped with a automatic air conditioning system. Operation modes using fresh air from outside the car as well as circulating air from inside the car were examined. The total number of microorganisms and the number of mold spores were measured by impaction in a high flow air sampler. Particles of 0.5 to 5.0 μm diameter were counted by a laser particle counter device.</p> <p>Results</p> <p>Overall 32 occasions of sampling were performed. The concentration of microorganisms outside the cars was always higher than it was inside the cars. Few minutes after starting the air conditioning system the total number of microorganisms was reduced by 81.7%, the number of mold spores was reduced by 83.3%, and the number of particles was reduced by 87.8%. There were no significant differences neither between the types of cars nor between the types of operation mode of the air conditioning system (fresh air vs. circulating air). All parameters that were looked for in this study improved during utilization of the car's air conditioning system.</p> <p>Conclusions</p> <p>We believe that the risk of an allergic reaction will be reduced during use also. Nevertheless, we recommend regular maintenance of the system and replacement of older filters after defined changing intervals.</p

    Multicentric validation of proteomic biomarkers in urine specific for diabetic nephropathy

    Get PDF
    Background: Urine proteome analysis is rapidly emerging as a tool for diagnosis and prognosis in disease states. For diagnosis of diabetic nephropathy (DN), urinary proteome analysis was successfully applied in a pilot study. The validity of the previously established proteomic biomarkers with respect to the diagnostic and prognostic potential was assessed on a separate set of patients recruited at three different European centers. In this case-control study of 148 Caucasian patients with diabetes mellitus type 2 and duration &gt;= 5 years, cases of DN were defined as albuminuria &gt;300 mg/d and diabetic retinopathy (n = 66). Controls were matched for gender and diabetes duration (n = 82). Methodology/Principal Findings: Proteome analysis was performed blinded using high-resolution capillary electrophoresis coupled with mass spectrometry (CE-MS). Data were evaluated employing the previously developed model for DN. Upon unblinding, the model for DN showed 93.8% sensitivity and 91.4% specificity, with an AUC of 0.948 (95% CI 0.898-0.978). Of 65 previously identified peptides, 60 were significantly different between cases and controls of this study. In &lt;10% of cases and controls classification by proteome analysis not entirely resulted in the expected clinical outcome. Analysis of patient's subsequent clinical course revealed later progression to DN in some of the false positive classified DN control patients. Conclusions: These data provide the first independent confirmation that profiling of the urinary proteome by CE-MS can adequately identify subjects with DN, supporting the generalizability of this approach. The data further establish urinary collagen fragments as biomarkers for diabetes-induced renal damage that may serve as earlier and more specific biomarkers than the currently used urinary albumin

    Design of the FemCure study: prospective multicentre study on the transmission of genital and extra-genital Chlamydia trachomatis infections in women receiving routine care

    Get PDF
    BACKGROUND: In women, anorectal infections with Chlamydia trachomatis (CT) are about as common as genital CT, yet the anorectal site remains largely untested in routine care. Anorectal CT frequently co-occurs with genital CT and may thus often be treated co-incidentally. Nevertheless, post-treatment detection of CT at both anatomic sites has been demonstrated. It is unknown whether anorectal CT may play a role in post-treatment transmission. This study, called FemCure, in women who receive routine treatment (either azithromycin or doxycycline) aims to understand the post-treatment transmission of anorectal CT infections, i.e., from their male sexual partner(s) and from and to the genital region of the same woman. The secondary objective is to evaluate other reasons for CT detection by nucleic acid amplification techniques (NAAT) such as treatment failure, in order to inform guidelines to optimize CT control. METHODS: A multicentre prospective cohort study (FemCure) is set up in which genital and/or anorectal CT positive women (n = 400) will be recruited at three large Dutch STI clinics located in South Limburg, Amsterdam and Rotterdam. The women self-collect anorectal and vaginal swabs before treatment, and at the end of weeks 1, 2, 4, 6, 8, 10, and 12. Samples are tested for presence of CT-DNA (by NAAT), load (by quantitative polymerase chain reaction -PCR), viability (by culture and viability PCR) and CT type (by multilocus sequence typing). Sexual exposure is assessed by online self-administered questionnaires and by testing samples for Y chromosomal DNA. Using logistic regression models, the impact of two key factors (i.e., sexual exposure and alternate anatomic site of infection) on detection of anorectal and genital CT will be assessed. DISCUSSION: The FemCure study will provide insight in the role of anorectal chlamydia infection in maintaining the CT burden in the context of treatment, and it will provide practical recommendations to reduce avoidable transmission. Implications will improve care strategies that take account of anorectal CT. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02694497

    Reduced Vitamin K Status as a Potentially Modifiable Risk Factor of Severe Coronavirus Disease 2019

    Get PDF
    BACKGROUND: Respiratory failure and thromboembolism are frequent in SARS-CoV-2-infected patients. Vitamin K activates both hepatic coagulation factors and extrahepatic endothelial anticoagulant protein S, required for thrombosis prevention. In times of vitamin K insufficiency, hepatic procoagulant factors are preferentially activated over extrahepatic proteins. Vitamin K also activates matrix Gla protein (MGP), which protects against pulmonary and vascular elastic fiber damage. We hypothesized that vitamin K may be implicated in coronavirus disease 2019 (COVID-19), linking pulmonary and thromboembolic disease. METHODS: 135 hospitalized COVID-19 patients were compared with 184 historical controls. Poor outcome was defined as invasive ventilation and/or death. Inactive vitamin K-dependent MGP (dp-ucMGP) and prothrombin (PIVKA-II) were measured, inversely related to extrahepatic and hepatic vitamin K status, respectively. Desmosine was measured to quantify the rate of elastic fiber degradation. Arterial calcification severity was assessed by computed tomography. RESULTS: Dp-ucMGP was elevated in COVID-19 patients compared to controls (p<0.001), with even higher dp-ucMGP in patients with poor outcomes (p<0.001). PIVKA-II was normal in 82.1% of patients. Dp-ucMGP was correlated with desmosine (p<0.001), and coronary artery (p=0.002) and thoracic aortic (p<0.001) calcification scores. CONCLUSIONS: Dp-ucMGP was severely increased in COVID-19 patients, indicating extrahepatic vitamin K insufficiency, which was related to poor outcome while hepatic procoagulant factor II remained unaffected. These data suggest a mechanism of pneumonia-induced extrahepatic vitamin K depletion leading to accelerated elastic fiber damage and thrombosis in severe COVID-19 due to impaired activation of MGP and endothelial protein S, respectively. A clinical trial could assess whether vitamin K administration improves COVID-19 outcomes

    Dependence of Intramyocardial Pressure and Coronary Flow on Ventricular Loading and Contractility: A Model Study

    Get PDF
    The phasic coronary arterial inflow during the normal cardiac cycle has been explained with simple (waterfall, intramyocardial pump) models, emphasizing the role of ventricular pressure. To explain changes in isovolumic and low afterload beats, these models were extended with the effect of three-dimensional wall stress, nonlinear characteristics of the coronary bed, and extravascular fluid exchange. With the associated increase in the number of model parameters, a detailed parameter sensitivity analysis has become difficult. Therefore we investigated the primary relations between ventricular pressure and volume, wall stress, intramyocardial pressure and coronary blood flow, with a mathematical model with a limited number of parameters. The model replicates several experimental observations: the phasic character of coronary inflow is virtually independent of maximum ventricular pressure, the amplitude of the coronary flow signal varies about proportionally with cardiac contractility, and intramyocardial pressure in the ventricular wall may exceed ventricular pressure. A parameter sensitivity analysis shows that the normalized amplitude of coronary inflow is mainly determined by contractility, reflected in ventricular pressure and, at low ventricular volumes, radial wall stress. Normalized flow amplitude is less sensitive to myocardial coronary compliance and resistance, and to the relation between active fiber stress, time, and sarcomere shortening velocity

    Synaptic Transmission from Horizontal Cells to Cones Is Impaired by Loss of Connexin Hemichannels

    Get PDF
    In the vertebrate retina, horizontal cells generate the inhibitory surround of bipolar cells, an essential step in contrast enhancement. For the last decades, the mechanism involved in this inhibitory synaptic pathway has been a major controversy in retinal research. One hypothesis suggests that connexin hemichannels mediate this negative feedback signal; another suggests that feedback is mediated by protons. Mutant zebrafish were generated that lack connexin 55.5 hemichannels in horizontal cells. Whole cell voltage clamp recordings were made from isolated horizontal cells and cones in flat mount retinas. Light-induced feedback from horizontal cells to cones was reduced in mutants. A reduction of feedback was also found when horizontal cells were pharmacologically hyperpolarized but was absent when they were pharmacologically depolarized. Hemichannel currents in isolated horizontal cells showed a similar behavior. The hyperpolarization-induced hemichannel current was strongly reduced in the mutants while the depolarization-induced hemichannel current was not. Intracellular recordings were made from horizontal cells. Consistent with impaired feedback in the mutant, spectral opponent responses in horizontal cells were diminished in these animals. A behavioral assay revealed a lower contrast-sensitivity, illustrating the role of the horizontal cell to cone feedback pathway in contrast enhancement. Model simulations showed that the observed modifications of feedback can be accounted for by an ephaptic mechanism. A model for feedback, in which the number of connexin hemichannels is reduced to about 40%, fully predicts the specific asymmetric modification of feedback. To our knowledge, this is the first successful genetic interference in the feedback pathway from horizontal cells to cones. It provides direct evidence for an unconventional role of connexin hemichannels in the inhibitory synapse between horizontal cells and cones. This is an important step in resolving a long-standing debate about the unusual form of (ephaptic) synaptic transmission between horizontal cells and cones in the vertebrate retina

    EQ-5D in Central and Eastern Europe : 2000-2015

    Get PDF
    Objective: Cost per quality-adjusted life year data are required for reimbursement decisions in many Central and Eastern European (CEE) countries. EQ-5D is by far the most commonly used instrument to generate utility values in CEE. This study aims to systematically review the literature on EQ-5D from eight CEE countries. Methods: An electronic database search was performed up to July 1, 2015 to identify original EQ-5D studies from the countries of interest. We analysed the use of EQ-5D with respect to clinical areas, methodological rigor, population norms and value sets. Results: We identified 143 studies providing 152 country-specific results with a total sample size of 81,619: Austria (n=11), Bulgaria (n=6), Czech Republic (n=18), Hungary (n=47), Poland (n=51), Romania (n=2), Slovakia (n=3) and Slovenia (n=14). Cardiovascular (20%), neurologic (16%), musculoskeletal (15%) and endocrine/nutritional/metabolic diseases (14%) were the most frequently studied clinical areas. Overall 112 (78%) of the studies reported EQ VAS results and 86 (60%) EQ-5D index scores, of which 27 (31%) did not specify the applied tariff. Hungary, Poland and Slovenia have population norms. Poland and Slovenia also have a national value set. Conclusions: Increasing use of EQ-5D is observed throughout CEE. The spread of health technology assessment activities in countries seems to be reflected in the number of EQ-5D studies. However, improvement in informed use and methodological quality of reporting is needed. In jurisdictions where no national value set is available, in order to ensure comparability we recommend to apply the most frequently used UK tariff. Regional collaboration between CEE countries should be strengthened

    Moving in the anthropocene: global reductions in terrestrial mammalian movements

    Get PDF
    Animal movement is fundamental for ecosystem functioning and species survival, yet the effects of the anthropogenic footprint on animal movements have not been estimated across species. Using a unique GPS-tracking database of 803 individuals across 57 species, we found that movements of mammals in areas with a comparatively high human footprint were on average one-half to one-third the extent of their movements in areas with a low human footprint. We attribute this reduction to behavioral changes of individual animals and to the exclusion of species with long-range movements from areas with higher human impact. Global loss of vagility alters a key ecological trait of animals that affects not only population persistence but also ecosystem processes such as predator-prey interactions, nutrient cycling, and disease transmission
    corecore