11 research outputs found

    Colorectal cancer risk variants on 11q23 and 15q13 are associated with unexplained adenomatous polyposis

    Get PDF
    Background Colorectal adenomatous polyposis is associated with a high risk of colorectal cancer (CRC) and is frequently caused by germline mutations in APC or MUTYH. However, in about 20–30% of patients no underlying gene defect can be identified. In this study, we tested if recently identified CRC risk variants play a role in patients with >10 adenomas. Methods We analysed a total of 16 SNPs with a reported association with CRC in a cohort of 252 genetically unexplained index patients with >10 colorectal adenomas and 745 controls. In addition, we collected detailed clinical information from index patients and their first-degree relatives (FDRs). Results We found a statistically significant association with two of the variants tested: rs3802842 (at chromosome 11q23, OR=1.60, 95% CI 1.3 to 2.0) and rs4779584 (at chromosome 15q13, OR=1.50, 95% CI 1.2 to 1.9). The majority of index patients (84%) had between 10 and 100 adenomas and 15% had >100 adenomas. Only two index patients (1%), both with >100 adenomas, had FDRs with polyposis. Forty-one per cent of the index patients had one or more FDRs with CRC. Conclusions These SNPs are the first common, low-penetrant variants reported to be associated with adenomatous polyposis not caused by a defect in the APC, MUTYH, POLD1 and POLE genes. Even though familial occurrence of polyposis was very rare, CRC was over-represented in FDRs of polyposis patients and, if confirmed, these relatives will therefore benefit from surveillance

    CHEK2*1100delC homozygosity in the Netherlands--prevalence and risk of breast and lung cancer

    No full text
    Item does not contain fulltextThe 1100delC mutation in the CHEK2 gene has a carrier frequency of up to 1.5% in individuals from North-West Europe. Women heterozygous for 1100delC have an increased breast cancer risk (odds ratio 2.7). To explore the prevalence and clinical consequences of 1100delC homozygosity in the Netherlands, we genotyped a sporadic breast cancer hospital-based cohort, a group of non-BRCA1/2 breast cancer families, and breast tumors from a tumor tissue bank. Three 1100delC homozygous patients were found in the cohort of 1434 sporadic breast cancer patients, suggesting an increased breast cancer risk for 1100delC homozygotes (odds ratio 3.4, 95% confidence interval 0.4-32.6, P=0.3). Another 1100delC homozygote was found in 592 individuals from 108 non-BRCA1/2 breast cancer families, and two more were found after testing 1706 breast tumors and confirming homozygosity on their wild-type DNA. Follow-up data was available for five homozygous patients, and remarkably, three of them had developed contralateral breast cancer. A possible relationship between 1100delC and lung cancer risk was investigated in 457 unrelated lung cancer patients but could not be confirmed. Due to the small number of 1100delC homozygotes identified, the breast cancer risk estimate associated with this genotype had limited accuracy but is probably higher than the risk in heterozygous females. Screening for CHEK2 1100delC could be beneficial in countries with a relatively high allele frequency

    Heterogeneity of Breast Cancer Associations with Five Susceptibility Loci by Clinical and Pathological Characteristics

    Get PDF
    A three-stage genome-wide association study recently identified single nucleotide polymorphisms (SNPs) in five loci (fibroblast growth receptor 2 (FGFR2), trinucleotide repeat containing 9 (TNRC9), mitogen-activated protein kinase 3 K1 (MAP3K1), 8q24, and lymphocyte-specific protein 1 (LSP1)) associated with breast cancer risk. We investigated whether the associations between these SNPs and breast cancer risk varied by clinically important tumor characteristics in up to 23,039 invasive breast cancer cases and 26,273 controls from 20 studies. We also evaluated their influence on overall survival in 13,527 cases from 13 studies. All participants were of European or Asian origin. rs2981582 in FGFR2 was more strongly related to ER-positive (per-allele OR (95%CI) = 1.31 (1.27–1.36)) than ER-negative (1.08 (1.03–1.14)) disease (P for heterogeneity = 10−13). This SNP was also more strongly related to PR-positive, low grade and node positive tumors (P = 10−5, 10−8, 0.013, respectively). The association for rs13281615 in 8q24 was stronger for ER-positive, PR-positive, and low grade tumors (P = 0.001, 0.011 and 10−4, respectively). The differences in the associations between SNPs in FGFR2 and 8q24 and risk by ER and grade remained significant after permutation adjustment for multiple comparisons and after adjustment for other tumor characteristics. Three SNPs (rs2981582, rs3803662, and rs889312) showed weak but significant associations with ER-negative disease, the strongest association being for rs3803662 in TNRC9 (1.14 (1.09–1.21)). rs13281615 in 8q24 was associated with an improvement in survival after diagnosis (per-allele HR = 0.90 (0.83–0.97). The association was attenuated and non-significant after adjusting for known prognostic factors. Our findings show that common genetic variants influence the pathological subtype of breast cancer and provide further support for the hypothesis that ER-positive and ER-negative disease are biologically distinct. Understanding the etiologic heterogeneity of breast cancer may ultimately result in improvements in prevention, early detection, and treatment

    The role of genetic breast cancer susceptibility variants as prognostic factors

    No full text
    Recent genome-wide association studies identified 11 single nucleotide polymorphisms (SNPs) associated with breast cancer (BC) risk. We investigated these and 62 other SNPs for their prognostic relevance. Confirmed BC risk SNPs rs17468277 (CASP8), rs1982073 (TGFB1), rs2981582 (FGFR2), rs13281615 (8q24), rs3817198 (LSP1), rs889312 (MAP3K1), rs3803662 (TOX3), rs13387042 (2q35), rs4973768 (SLC4A7), rs6504950 (COX11) and rs10941679 (5p12) were genotyped for 25 853 BC patients with the available follow-up; 62 other SNPs, which have been suggested as BC risk SNPs by a GWAS or as candidate SNPs from individual studies, were genotyped for replication purposes in subsets of these patients. Cox proportional hazard models were used to test the association of these SNPs with overall survival (OS) and BC-specific survival (BCS). For the confirmed loci, we performed an accessory analysis of publicly available gene expression data and the prognosis in a different patient group. One of the 11 SNPs, rs3803662 (TOX3) and none of the 62 candidate/GWAS SNPs were associated with OS and/or BCS at P<0.01. The genotypic-specific survival for rs3803662 suggested a recessive mode of action [hazard ratio (HR) of rare homozygous carriers=1.21; 95% CI: 1.09-1.35, P=0.0002 and HR=1.29; 95% CI: 1.12-1.47, P=0.0003 for OS and BCS, respectively]. This association was seen similarly in all analyzed tumor subgroups defined by nodal status, tumor size, grade and estrogen receptor. Breast tumor expression of these genes was not associated with prognosis. With the exception of rs3803662 (TOX3), there was no evidence that any of the SNPs associated with BC susceptibility were associated with the BC survival. Survival may be influenced by a distinct set of germline variants from those influencing susceptibility. © The Author 2012. Published by Oxford University Press. All rights reserved

    Low penetrance breast cancer susceptibility loci are associated with specific breast tumor subtypes: Findings from the Breast Cancer Association Consortium

    No full text
    Contains fulltext : 96071.pdf (publisher's version ) (Closed access)Breast cancers demonstrate substantial biological, clinical and etiological heterogeneity. We investigated breast cancer risk associations of eight susceptibility loci identified in GWAS and two putative susceptibility loci in candidate genes in relation to specific breast tumor subtypes. Subtypes were defined by five markers (ER, PR, HER2, CK5/6, EGFR) and other pathological and clinical features. Analyses included up to 30 040 invasive breast cancer cases and 53 692 controls from 31 studies within the Breast Cancer Association Consortium. We confirmed previous reports of stronger associations with ER+ than ER- tumors for six of the eight loci identified in GWAS: rs2981582 (10q26) (P-heterogeneity = 6.1 x 10(-18)), rs3803662 (16q12) (P = 3.7 x 10(-5)), rs13281615 (8q24) (P = 0.002), rs13387042 (2q35) (P = 0.006), rs4973768 (3p24) (P = 0.003) and rs6504950 (17q23) (P = 0.002). The two candidate loci, CASP8 (rs1045485, rs17468277) and TGFB1 (rs1982073), were most strongly related with the risk of PR negative tumors (P = 5.1 x 10(-6) and P = 4.1 x 10(-4), respectively), as previously suggested. Four of the eight loci identified in GWAS were associated with triple negative tumors (P </= 0.016): rs3803662 (16q12), rs889312 (5q11), rs3817198 (11p15) and rs13387042 (2q35); however, only two of them (16q12 and 2q35) were associated with tumors with the core basal phenotype (P </= 0.002). These analyses are consistent with different biological origins of breast cancers, and indicate that tumor stratification might help in the identification and characterization of novel risk factors for breast cancer subtypes. This may eventually result in further improvements in prevention, early detection and treatment
    corecore