384 research outputs found

    On the stability of the atmosphere-vegetation system in the Sahara/Sahel region

    Get PDF
    A conceptual model has been developed for the analysis of atmosphere-vegetation interaction in subtropical deserts. The model can exhibit multiple stable states-in the system: a "desert" equilibrium with low precipitation and absent vegetation and a "green" equilibrium with moderate precipitation and permanent vegetation cover. The conceptual model is applied to interpret the results of two climate-vegetation models: a comprehensive coupled atmosphere-biome model and a simple hox model. In both applications, two stable states exist for the western Sahara/Sahel region for the present-day climate, and the only green equilibrium is found for the mid-Holocene climate. The latter agrees well with paleoreconstructions of Sahara/Sahel climate and vegetation. It is shown that for present-day climate the green equilibrium is less probable than the desert equilibrium, and this explains the existence of the Sahara desert as it is today. The difference in albedo between the desert and vegetation cover appears to be the main parameter that controls an existence of multiple stable states. The Charney's mechanism of self-stabilization of subtropical deserts is generalized by accounting for atmospheric hydrology, the heat and moisture exchange at the side boundaries, and taking into account the dynamic properties of the surface. The generalized mechanism explains the self-stabilization of both desert and vegetation in the western Sahara/Sahel region, The role of surface roughness in climate-vegetation interaction is shown to be of secondary importance in comparison with albedo. Furthermore, for the high albedo, precipitation increases with increasing roughness while, for the low albedo, the opposite is found

    Determination of the Weak Axial Vector Coupling from a Measurement of the Beta-Asymmetry Parameter A in Neutron Beta Decay

    Full text link
    We report on a new measurement of the neutron beta-asymmetry parameter AA with the instrument \perkeo. Main advancements are the high neutron polarization of P=99.7(1)P = 99.7(1)% from a novel arrangement of super mirror polarizers and reduced background from improvements in beam line and shielding. Leading corrections were thus reduced by a factor of 4, pushing them below the level of statistical error and resulting in a significant reduction of systematic uncertainty compared to our previous experiments. From the result A0=−0.11996(58)A_0 = -0.11996(58), we derive the ratio of the axial-vector to the vector coupling constant λ=gA/gV=−1.2767(16)\lambda = g_\mathrm{A}/g_\mathrm{V} = -1.2767(16)Comment: 5 pages, 4 figure

    Local ecosystem feedbacks and critical transitions in the climate

    Get PDF
    Global and regional climate models, such as those used in IPCC assessments, are the best tools available for climate predictions. Such models typically account for large-scale land-atmosphere feedbacks. However, these models omit local vegetationenvironment 5 feedbacks that are crucial for critical transitions in ecosystems. Here, we reveal the hypothesis that, if the balance of feedbacks is positive at all scales, local vegetation-environment feedbacks may trigger a cascade of amplifying effects, propagating from local to large scale, possibly leading to critical transitions in the largescale climate. We call for linking local ecosystem feedbacks with large-scale land10 atmosphere feedbacks in global and regional climate models in order to yield climate predictions that we are more confident about

    Measurement of the neutron electric dipole moment via spin rotation in a non-centrosymmetric crystal

    Full text link
    We have measured the neutron electric dipole moment using spin rotation in a non-centrosymmetric crystal. Our result is d_n = (2.5 +- 6.5(stat) +- 5.5(syst)) 10^{-24} e cm. The dominating contribution to the systematic uncertainty is statistical in nature and will reduce with improved statistics. The statistical sensitivity can be increased to 2 10^{-26} e cm in 100 days data taking with an improved setup. We state technical requirements for a systematic uncertainty at the same level.Comment: submitted to Phys. Lett.

    Characterization of a ballistic supermirror neutron guide

    Full text link
    We describe the beam characteristics of the first ballistic supermirror neutron guide H113 that feeds the neutron user facility for particle physics PF1B of the Institute Laue-Langevin, Grenoble (ILL). At present, the neutron capture flux density of H113 at its 20x6cm2 exit window is 1.35x10^10/cm^2/s, and will soon be raised to above 2x10^10/cm^2/s. Beam divergence is no larger than beam divergence from a conventional Ni coated guide. A model is developed that permits rapid calculation of beam profiles and absolute event rates from such a beam. We propose a procedure that permits inter-comparability of the main features of beams emitted from ballistic or conventional neutron guides.Comment: 15 pages, 11 figures, to be submitted to Nuclear Instruments and Methods

    Measurement of the neutron electric dipole moment by crystal diffraction

    Full text link
    An experiment using a prototype setup to search for the neutron electric dipole moment by measuring spin-rotation in a non-centrosymmetric crystal (quartz) was carried out to investigate statistical sensitivity and systematic effects of the method. It has been demonstrated that the concept of the method works. The preliminary result of the experiment is dn=(2.5±6.5)⋅10−24d_{\rm n}=(2.5\pm 6.5)\cdot 10^{-24} e⋅\cdot cm. The experiment showed that an accuracy of ∼2.5⋅10−26\sim 2.5\cdot 10^{-26} e⋅\cdot cm can be obtained in 100 days data taking, using available quartz crystals and neutron beams.Comment: 13 pages, 4 figure

    Summer weather becomes more persistent in a 2 °C world

    Get PDF
    Heat and rainfall extremes have intensified over the past few decades and this trend is projected to continue with future global warming1–3. A long persistence of extreme events often leads to societal impacts with warm-and-dry conditions severely affecting agriculture and consecutive days of heavy rainfall leading to flooding. Here we report systematic increases in the persistence of boreal summer weather in a multi-model analysis of a world 2 °C above pre-industrial compared to present-day climate. Averaged over the Northern Hemisphere mid-latitude land area, the probability of warm periods lasting longer than two weeks is projected to increase by 4% (2–6% full uncertainty range) after removing seasonal-mean warming. Compound dry–warm persistence increases at a similar magnitude on average but regionally up to 20% (11–42%) in eastern North America. The probability of at least seven consecutive days of strong precipitation increases by 26% (15–37%) for the mid-latitudes. We present evidence that weakening storm track activity contributes to the projected increase in warm and dry persistence. These changes in persistence are largely avoided when warming is limited to 1.5 °C. In conjunction with the projected intensification of heat and rainfall extremes, an increase in persistence can substantially worsen the effects of future weather extremes
    • …
    corecore