92 research outputs found

    Release of Lungworm Larvae from Snails in the Environment: Potential for Alternative Transmission Pathways

    Get PDF
    Background: Gastropod-borne parasites may cause debilitating clinical conditions in animals and humans following the consumption of infected intermediate or paratenic hosts. However, the ingestion of fresh vegetables contaminated by snail mucus and/or water has also been proposed as a source of the infection for some zoonotic metastrongyloids (e.g., Angiostrongylus cantonensis). In the meantime, the feline lungworms Aelurostrongylus abstrusus and Troglostrongylus brevior are increasingly spreading among cat populations, along with their gastropod intermediate hosts. The aim of this study was to assess the potential of alternative transmission pathways for A. abstrusus and T. brevior L3 via the mucus of infected Helix aspersa snails and the water where gastropods died. In addition, the histological examination of snail specimens provided information on the larval localization and inflammatory reactions in the intermediate host. Methodology/Principal Findings: Twenty-four specimens of H. aspersa received ~500 L1 of A. abstrusus and T. brevior, and were assigned to six study groups. Snails were subjected to different mechanical and chemical stimuli throughout 20 days in order to elicit the production of mucus. At the end of the study, gastropods were submerged in tap water and the sediment was observed for lungworm larvae for three consecutive days. Finally, snails were artificially digested and recovered larvae were counted and morphologically and molecularly identified. The anatomical localization of A. abstrusus and T. brevior larvae within snail tissues was investigated by histology. L3 were detected in the snail mucus (i.e., 37 A. abstrusus and 19 T. brevior) and in the sediment of submerged specimens (172 A. abstrusus and 39 T. brevior). Following the artificial digestion of H. aspersa snails, a mean number of 127.8 A. abstrusus and 60.3 T. brevior larvae were recovered. The number of snail sections positive for A. abstrusus was higher than those for T. brevior. Conclusions: Results of this study indicate that A. abstrusus and T. brevior infective L3 are shed in the mucus of H. aspersa or in water where infected gastropods had died submerged. Both elimination pathways may represent alternative route(s) of environmental contamination and source of the infection for these nematodes under field conditions and may significantly affect the epidemiology of feline lungworms. Considering that snails may act as intermediate hosts for other metastrongyloid species, the environmental contamination by mucus-released larvae is discussed in a broader context

    Estimating Ixodes ricinus densities on the landscape scale

    Get PDF
    Background: The study describes the estimation of the spatial distribution of questing nymphal tick densities by investigating Ixodes ricinus in Southwest Germany as an example. The production of high-resolution maps of quest-ing tick densities is an important key to quantify the risk of tick-borne diseases. Previous I. ricinus maps were based on quantitative as well as semi-quantitative categorisations of the tick density observed at study sites with differ-ent vegetation types or indices, all compiled on local scales. Here, a quantitative approach on the landscape scale is introduced. Methods: During 2 years, 2013 and 2014, host-seeking ticks were collected each month at 25 sampling sites by flag-ging an area of 100 square meters. All tick stages were identified to species level to select nymphal ticks of I. ricinus, which were used to develop and calibrate Poisson regression models. The environmental variables height above sea level, temperature, relative humidity, saturation deficit and land cover classification were used as explanatory variables. Results: The number of flagged nymphal tick densities range from zero (mountain site) to more than 1,000 nymphs/100 m2. Calibrating the Poisson regression models with these nymphal densities results in an explained variance of 72 % and a prediction error of 110 nymphs/100 m2 in 2013. Generally, nymphal densities (maximum 37

    Treating cofactors can reverse the expansion of a primary disease epidemic

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cofactors, "nuisance" conditions or pathogens that affect the spread of a primary disease, are likely to be the norm rather than the exception in disease dynamics. Here we present a "simplest possible" demographic model that incorporates two distinct effects of cofactors: that on the transmission of the primary disease from an infected host bearing the cofactor, and that on the acquisition of the primary disease by an individual that is not infected with the primary disease but carries the cofactor.</p> <p>Methods</p> <p>We constructed and analyzed a four-patch compartment model that accommodates a cofactor. We applied the model to HIV spread in the presence of the causal agent of genital schistosomiasis, <it>Schistosoma hematobium</it>, a pathogen commonly co-occurring with HIV in sub-Saharan Africa.</p> <p>Results</p> <p>We found that cofactors can have a range of effects on primary disease dynamics, including shifting the primary disease from non-endemic to endemic, increasing the prevalence of the primary disease, and reversing demographic growth when the host population bears only the primary disease to demographic decline. We show that under parameter values based on the biology of the HIV/<it>S. haematobium </it>system, reduction of the schistosome-bearing subpopulations (e.g. through periodic use of antihelminths) can slow and even reverse the spread of HIV through the host population.</p> <p>Conclusions</p> <p>Typical single-disease models provide estimates of future conditions and guidance for direct intervention efforts relating only to the modeled primary disease. Our results suggest that, in circumstances under which a cofactor affects the disease dynamics, the most effective intervention effort might not be one focused on direct treatment of the primary disease alone. The cofactor model presented here can be used to estimate the impact of the cofactor in a particular disease/cofactor system without requiring the development of a more complicated model which incorporates many other specific aspects of the chosen disease/cofactor pair. Simulation results for the HIV/<it>S. haematobium </it>system have profound implications for disease management in developing areas, in that they provide evidence that in some cases treating cofactors may be the most successful and cost-effective way to slow the spread of primary diseases.</p

    Pathocenosis: A Holistic Approach to Disease Ecology

    Get PDF
    The History of medicine describes the emergence and recognition of infectious diseases, and human attempts to stem them. It also throws light on the role of changing environmental conditions on disease emergence/re-emergence, establishment and, sometimes, disappearance. However, the dynamics of infectious diseases is also influenced by the relationships between the community of interacting infectious agents present at a given time in a given territory, a concept that Mirko Grmek, an historian of medicine, conceptualized with the word “pathocenosis”. The spatial and temporal evolution of diseases, when observed at the appropriate scales, illustrates how a change in the pathocenosis, whether of “natural” or anthropic origin, can lead to the emergence and spread of diseases

    Impact of repeated four-monthly anthelmintic treatment on Plasmodium infection in preschool children: a double-blind placebo-controlled randomized trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Helminth infections can alter susceptibility to malaria. Studies need to determine whether or not deworming programs can impact on <it>Plasmodium </it>infections in preschool children.</p> <p>Methods</p> <p>A double-blind placebo-controlled randomised trial was conducted to investigate the impact of anthelmintic treatment on <it>Plasmodium </it>infection in children aged 12-59 months. Children were randomly assigned to receive either albendazole or placebo every four months for 12 months with a follow-up at 14 months.</p> <p>Results</p> <p>320 children (out of 1228, 26.1%) complied with all the follow-up assessments. <it>Plasmodium </it>prevalence and mean <it>Plasmodium </it>parasite density was significantly higher in the treatment group (44.9% and 2319 ± SE 511) compared to the placebo group (33.3% and 1471 ± 341) at baseline. The odds of having <it>Plasmodium </it>infection increased over time for children in both the placebo and treatment groups, however this increase was significantly slower for children in the treatment group (P = 0.002). By month 14, mean <it>Plasmodium </it>density had increased by 156% in the placebo group and 98% in the treatment group but the rate of change in <it>Plasmodium </it>density was not significantly different between the groups. The change from baseline in haemoglobin had a steeper increase among children in the treatment group when compared to the placebo group but this was not statistically significant.</p> <p>Conclusions</p> <p>Repeated four-monthly anthelminthic treatments for 14 months resulted in a significantly lower increase in the prevalence of <it>Plasmodium </it>infection in preschool children which coincided with a reduction in both the prevalence and intensity of <it>A. lumbricoides </it>infections.</p> <p>Trial Registration</p> <p>Current controlled trials ISRCTN44215995</p

    Contributions to the phylogeny of Ixodes (Pholeoixodes) canisuga, I. (Ph.) kaiseri, I. (Ph.) hexagonus and a simple pictorial key for the identification of their females

    Get PDF
    Background: In Europe, hard ticks of the subgenus Pholeoixodes (Ixodidae: Ixodes) are usually associated with burrow-dwelling mammals and terrestrial birds. Reports of Pholeoixodes spp. from carnivores are frequently contradictory, and their identification is not based on key diagnostic characters. Therefore, the aims of the present study were to identify ticks collected from dogs, foxes and badgers in several European countries, and to reassess their systematic status with molecular analyses using two mitochondrial markers. Results: Between 2003 and 2017, 144 Pholeoixodes spp. ticks were collected in nine European countries. From accurate descriptions and comparison with type-materials, a simple illustrated identification key was compiled for adult females, by focusing on the shape of the anterior surface of basis capituli. Based on this key, 71 female ticks were identified as I. canisuga, 21 as I. kaiseri and 21 as I. hexagonus. DNA was extracted from these 113 female ticks, and from further 31 specimens. Fragments of two mitochondrial genes, cox1 (cytochrome c oxidase subunit 1) and 16S rRNA, were amplified and sequenced. Ixodes kaiseri had nine unique cox1 haplotypes, which showed 99.2-100% sequence identity, whereas I. canisuga and I. hexagonus had eleven and five cox1 haplotypes, respectively, with 99.5-100% sequence identity. The distribution of cox1 haplotypes reflected a geographical pattern. Pholeoixodes spp. ticks had fewer 16S rRNA haplotypes, with a lower degree of intraspecific divergence (99.5-100% sequence identity) and no geographical clustering. Phylogenetic analyses were in agreement with morphology: I. kaiseri and I. hexagonus (with the similar shape of the anterior surface of basis capituli) were genetically more closely related to each other than to I. canisuga. Phylogenetic analyses also showed that the subgenus Eschatocephalus (bat ticks) clustered within the subgenus Pholeoixodes. Conclusions: A simple, illustrated identification key is provided for female Pholeoixodes ticks of carnivores (including I. hexagonus and I. rugicollis) to prevent future misidentification of these species. It is also shown that I. kaiseri is more widespread in Europe than previously thought. Phylogenetic analyses suggest that the subgenus Pholeoixodes is not monophyletic: either the subgenus Eschatocephalus should be included in Pholeoixodes, or the latter subgenus should be divided, which is a task for future studies

    Necator americanus and Helminth Co-Infections: Further Down-Modulation of Hookworm-Specific Type 1 Immune Responses

    Get PDF
    Parasitic infections in humans are common in tropical regions and under bad housing and sanitation conditions multiple parasitic infections are the rule rather than the exception. For helminth infections, which are thought to affect almost a quarter of the world's population, most common combinations include soil-transmitted helminths, such as hookworm, roundworm, and whipworm, as well as extra-intestinal infections by schistosomes. In order to develop and test a hookworm vaccine in endemic areas, the understanding of the impact of multiple helminth infections (co-infection) on the immune response against hookworm in infected individuals is crucial. The authors report in their article, that several parameters of the cellular (T cell markers, cytokines, chemokines) and humoral immune response (e.g. IgG4 and IgE antibodies) against hookworm are significantly affected or modulated in individuals co-infected with hookworm, roundworm and/or schistosomes. These results imply that the immune response against components of a hookworm vaccine might be altered by previous contact with other helminth species in endemic areas

    Prevalence, Features and Risk Factors for Malaria Co-Infections amongst Visceral Leishmaniasis Patients from Amudat Hospital, Uganda

    Get PDF
    Visceral leishmaniasis (VL) and malaria are two major parasitic diseases sharing a similar demographic and geographical distribution. In areas where both diseases are endemic, such as Sudan, Uganda, India and Bangladesh, co-infection cases have been reported, but features and risk factors associated with these co-morbidities remain poorly characterized. In the present study, routinely collected data of VL patients admitted to Amudat Hospital, Uganda, were used to investigate the magnitude of VL-malaria co-infections and identify possible risk factors. Nearly 20% of the patients included in this study were found to be co-infected with VL and malaria, indicating that this is a common condition among VL patients living in malaria endemic areas. Young age (≤9 years) was identified as an important risk factor for contracting the VL-malaria co-infection, while being anemic or carrying a skin infection appeared to negatively correlate with the co-morbidity. Co-infected patients presented with slightly more severe symptoms compared to mono-infected patients, but had a similar prognosis, possibly due to early diagnosis of malaria as a result of systematic testing. In conclusion, these results emphasize the importance of performing malaria screening amongst VL patients living in malaria-endemic areas and suggest that close monitoring of co-infected patients should be implemented
    corecore