276 research outputs found

    Simulation study of random sequential adsorption of mixtures on a triangular lattice

    Full text link
    Random sequential adsorption of binary mixtures of extended objects on a two-dimensional triangular lattice is studied numerically by means of Monte Carlo simulations. The depositing objects are formed by self-avoiding random walks on the lattice. We concentrate here on the influence of the symmetry properties of the shapes on the kinetics of the deposition processes in two-component mixtures. Approach to the jamming limit in the case of mixtures is found to be exponential, of the form: θ(t)θjamΔθexp(t/σ),\theta(t) \sim \theta_{jam}-\Delta\theta \exp (-t/\sigma), and the values of the parameter σ\sigma are determined by the order of symmetry of the less symmetric object in the mixture. Depending on the local geometry of the objects making the mixture, jamming coverage of a mixture can be either greater than both single-component jamming coverages or it can be in between these values. Results of the simulations for various fractional concentrations of the objects in the mixture are also presented.Comment: 11 figures, 2 table

    Effective partitioning method for computing weighted Moore-Penrose inverse

    Get PDF
    We introduce a method and an algorithm for computing the weighted Moore-Penrose inverse of multiple-variable polynomial matrix and the related algorithm which is appropriated for sparse polynomial matrices. These methods and algorithms are generalizations of algorithms developed in [M.B. Tasic, P.S. Stanimirovic, M.D. Petkovic, Symbolic computation of weighted Moore-Penrose inverse using partitioning method, Appl. Math. Comput. 189 (2007) 615-640] to multiple-variable rational and polynomial matrices and improvements of these algorithms on sparse matrices. Also, these methods are generalizations of the partitioning method for computing the Moore-Penrose inverse of rational and polynomial matrices introduced in [P.S. Stanimirovic, M.B. Tasic, Partitioning method for rational and polynomial matrices, Appl. Math. Comput. 155 (2004) 137-163; M.D. Petkovic, P.S. Stanimirovic, Symbolic computation of the Moore-Penrose inverse using partitioning method, Internat. J. Comput. Math. 82 (2005) 355-367] to the case of weighted Moore-Penrose inverse. Algorithms are implemented in the symbolic computational package MATHEMATICA

    The Effect of Randomness on the Mott State

    Full text link
    We reinvestigate the competition between the Mott and the Anderson insulator state in a one-dimensional disordered fermionic system by a combination of instanton and renormalization group methods. Tracing back both the compressibility and the ac-conductivity to a vanishing kink energy of the electronic displacement field we do not find any indication for the existence of an intermediate (Mott glass) phase.Comment: 4 page

    Synthesis, characterization and biological study of new dinuclear zinc(ii) and nickel(ii) octaaza macrocyclic complexes

    Get PDF
    Two new nitrato complexes of zinc and nickel with 1,4,8,11-tetrakis(2-pyridylmethyl)-1,4,8,11-tetraazacyclotetradecane (tpmc), have been synthesized and characterized. The IR spectral peaks showed that the coordinated and ionic nitrate ions are in agreement with the formula proposed by elemental analysis. Conductometric titrations predicted methanol to be a convenient solvent for synthesis and revealed the stoichiometry of the complexes, while molar electrical conductivities indicated a 1 : 3 complex electrolyte type for the zinc complex, and a 1 : 2 complex electrolyte type for the nickel complex. The optimized complex structure was obtained by molecular modeling and density functional theory calculations. The biological activity of the novel complexes was examined by screening eight different bacterial strains and two cancer cell lines. The zinc complex showed better antimicrobial activity against the bacterial strains, while the complexes did not show significance antiproliferative activity toward cancer cells MCF-7 and MDA-MB-231

    Carrier drift velocity and edge magnetoplasmons in graphene

    Get PDF
    We investigate electron dynamics at the graphene edge by studying the propagation of collective edge magnetoplasmon (EMP) excitations. By timing the travel of narrow wave-packets on picosecond time scales around exfoliated samples, we find chiral propagation with low attenuation at a velocity which is quantized on Hall plateaus. We extract the carrier drift contribution from the EMP propagation and find it to be slightly less than the Fermi velocity, as expected for an abrupt edge. We also extract the characteristic length for Coulomb interaction at the edge and find it to be smaller than for soft, depletion edge systems.Comment: 5 pages, 3 figures of main text and 6 pages, 6 figures of supplemental materia

    Supplementary data for article: Petković, B. B.; Stanković, D.; Milčić, M.; Sovilj, S. P.; Manojlović, D. Dinuclear Copper(II) Octaazamacrocyclic Complex in a PVC Coated GCE and Graphite as a Voltammetric Sensor for Determination of Gallic Acid and Antioxidant Capacity of Wine Samples. Talanta 2015, 132, 513–519. https://doi.org/10.1016/j.talanta.2014.09.025

    Get PDF
    Supplementary material for: [https://doi.org/10.1016/j.talanta.2014.09.025]Related to published version: [http://cherry.chem.bg.ac.rs/handle/123456789/1654]Related to accepted version: [http://cherry.chem.bg.ac.rs/handle/123456789/3363

    Physico-chemical and mechanical properties of geopolymer/zircon composites

    Get PDF
    The effect of zircon (ZrSiO4) on the physico-chemical and mechanical properties of geopolymer/zircon composites was examined in this study. Four geopolymer/zircon composites containing 10, 20, 30 and 40 wt.% zircon were prepared from metakaolin with alkali activators. Characterization of the obtained geopolymers was performed by X-ray diffraction (XRD), Scanning electron microscope (SEM-EDS), Fourier transform infrared spectroscopy (FTIR) and Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF). XRD results did not confirmed the formation of interconnected phases between added zircon, starting aluminum silicates and alkali activators. Compressive strength of prepared geopolymer was examined. The maximum obtained compressive strength of 70.15 MPa was measured in sample containing the smallest fraction of zircon, i.e., 10 wt.%. Addition of larger amount of zircon (20 wt.%) hinders the progress of geopolymerization reaction and consequently decreases compressive strength
    corecore